цов линии СВА при воздействии мультифитоадаптогена в раннем постнатальном онтогенезе.

Материалы и методы. Стандартизованный сухой экстракт мультифитоадаптогена, включающего компоненты 40 растительных экстрактов (женьшеня, родиолы розовой, элеутерококка и др.), обладает, в том числе, иммуномодулирующим, антимутагенным, антиоксидантным эффектами. Эксперимент проводили на 200 мышах-самцах линии СВА. Мыши группы контроля получали воду; мыши опытной группы — 0.3~% раствор препарата в течение 1-го мес жизни, захватывая период, соответствующий дифференцировке нормальной ткани печени. Концентрацию кортикостерона в сыворотке крови мышей определяли в возрасте 4.8,22 мес иммуноферментным методом.

Результаты. У мышей контрольной группы с увеличением возраста выявлено постепенное нарастание концентрации кортикостерона в крови. К 8-месячному возрасту значение данного показателя повысилось с 75,6 \pm 1,7 до 96,5 \pm 7,2 нг/мл, p_{4-8} = 0,01; к 22-месячному возрасту — до 140,0 \pm 4,5 нг/мл, p_{8-22} = 0,0002. У мышей опытной группы к 8-месячному возрасту отмечалась лишь тенденция к увеличению уровня кортикостерона в сыворотке крови (с 69,2 \pm 2,9 до 79,1 \pm 3,6 нг/мл, p_{4-8} = 0,05). В позднем онтогенезе у опытных мышей концентрация кортикостерона (105,0 \pm 1,9 нг/мл) была достоверно снижена по сравнению с контролем в этом же возрасте (p_{1-2} = 0,0002).

Заключение. Кратковременное воздействие мультифитоадаптогена в раннем постнатальном онтогенезе у мышей высокогепатомной линии СВА предотвращало повышение стресс-гормона кортикостерона. Вместе с тем гормономодулирующий эффект сопровождался повышением иммунореактивности организма, связанной с усилением экспрессии лейкоцитарных интегринов, а также нормализацией уровня IL6 и IL10.

 $E. B. \ Бочаров^I, P. B. \ Карпова^I, O.A. \ Бочарова^I, H.A. \ Брусенцов^I, В. Г. \ Кучеряну^2, H. Е. \ Кушлинский^I МУЛЬТИФИТОАДАПТОГЕН РЕГУЛИРУЕТ$

ТЕСТОСТЕРОН ПРИ ГЕПАТОКАНЦЕРОГЕНЕЗЕ

¹ФГБУ «РОНЦ им. Н.Н. Блохина» Минздрава России, Москва; ²ФГБНУ «НИИ общей патологии и патофизиологии», Москва

Введение. Тестостерон — основной анаболический гормон, который является одним из ключевых сигнальных веществ в регуляции репродуктивного, энергетического гомеостазов, иммунной реактивности организма.

Цель исследования — изучение уровня тестостерона у мышей-самцов линии СВА при спонтанном гепатоканцерогенезе и возможности его коррекции при воздействии мультифитоадаптогена в раннем постнатальном онтогенезе.

Материалы и методы. Стандартизованный сухой экстракт на основе мультифитоадаптогена, включающего компоненты 40 растительных экстрактов (женьшеня, родиолы розовой, элеутерококка и др.) и обладающего иммуномодулирующим, интерфероногенным, антимутагенным, антиоксидантным, радиопротекторным эффектами; 200 мышей-самцов инбредной линии СВА с высокой частотой спонтанных гепатом. Контрольные мыши получали в качестве питья воду; опытные — 0,3 % раствор сухого экстракта мультифитоадаптогена в течение 1 мес постнаталь-

ного онтогенеза. Концентрацию тестостерона в сыворотке крови мышей определяли в возрасте 4, 8 и 22 мес иммуноферментным методом.

Результаты. В возрасте 4 мес у животных контрольной и опытной групп концентрация тестостерона в крови составила $2,6\pm0,3$ и $3,6\pm0,4$ нг/мл соответственно ($p_{1-2}=0,07$). В онтогенезе у мышей обеих групп отмечено снижение в крови данного показателя. Вместе с тем уже в возрасте 8 мес у мышей контрольной группы выявлен более низкий уровень тестостерона в крови ($1,6\pm0,4$ нг/мл) по сравнению с опытными животными ($2,8\pm0,2$ нг/мл; $p_{1-2}=0,01$). В позднем онтогенезе это отставание становится более ярко выраженным. В контрольной группе концентрация тестостерона составила $0,3\pm0,1$ нг/мл, в опытной $-0,8\pm0,1$ нг/мл ($p_{1-2}=0,001$).

Заключение. Воздействие сухого экстракта фитоадаптогена в раннем постнатальном онтогенезе (в течение 1 мес жизни, захватывая период, соответствующий дифференцировке нормальной ткани печени), оказало гормономодулирующий эффект у мышей высокогепатомной линии СВА, предотвращая снижение уровня анаболического гормона тестостерона. Гормономодулирующий эффект сопровождался усилением иммунореактивности организма, связанной с повышением экспрессии лейкоцитарных интегринов, а также нормализацией уровня IL6 и IL10.

 $\underline{H.A.\ Epycehuos}^{1}$, О.А. Бочарова 1 , И.С. Голубева 1 , П.И. Никитин 2 , М.П. Никитин 2 , Т.Н. Брусенцова 3 , В.Д. Кузнецов 3

ФЕРРИМАГНИТНАЯ ТЕРМОХИМИОТЕРАПИЯ ЗЛОКАЧЕСТВЕННЫХ ОПУХОЛЕЙ КОМБИНАЦИЯМИ МАГНИТОУПРАВЛЯЕМЫХ НАНОЧАСТИЦ

¹ФГБУ «РОНЦ им. Н.Н. Блохина» Минздрава России, Москва; ²ФГБУН «Институт общей физики им. А.М. Прохорова РАН», Москва;

³ФГБОУ ВО «РХТУ им. Д.И. Менделеева», Москва

Введение. Декстранферрит (ДФ) является одним из перспективных магнитоуправляемых нанопрепаратов для создания противоопухолевых систем, поскольку химически инертен, имеет $\Pi \underline{\mathcal{I}}_{50}$ 5 г/кг, медленно биодеструктируется и полностью метаболизируется в организме млекопитающих.

Цель исследования — получение и оценка противоопухолевой активности комбинации $Д\Phi$, цисплатина (ЦП) и митоксантрона (МК) в виде магнитоуправляемого стерильного золя для внутриопухолевого введения.

Материалы и методы. В качестве магнитоуправляемого носителя комбинации ЦП — МК выбрали $\sim 40~\%$ водный золь наночастиц ДФ. Полученный стерильный золь 150 мг ДФ в 200—350 мкл воды медленно вводили по периметру опухолей объемом $45 \pm 15~\text{кm}^3$ 20 мышам BDF1 на 7-й день после прививки карциномы Эрлиха. Ферримагнитную термотерапию (ФМТТ) проводили, выдерживая мышей в поле 0,88 МГц, 150 Вт в течение 30 мин. Температура тела не изменялась, температура опухолей повышалась до 48~°C. ЦП 0,03 мг в 200 мкл 0,9 % NaCl вводили 10 мышам по периметру опухоли объемом $42 \pm 14~\text{km}^3$. В тех же условиях опухоли уменьшались в размерах до $4,6 \pm 1,5~\text{km}^3$, увеличение продолжительности жизни (УПЖ) составило 93 %.