Preview

Russian Journal of Biotherapy

Advanced search

Neoantigens in tumor immunotherapy

https://doi.org/10.17650/1726-9784-2018-17-2-6-14

Abstract

Malignant tumors are known to have complex mutational profiles and harbor concurrent alterations in many somatic genes. The inher ent genetic heterogeneity is a critical determinant of cancer cells. The term of neoantigens was introduce to emphasize that these antigens are specific for cancer cells and are absent in normal tissue. Neoantigenes are highly immunogenic and at present are considered to be the target molecules in cancer therapy. Although the neoantigens have been known for a long time, their study and use became possible with the increase in the availability of mass cluster sequencing to detect all mutations in tumors and bioinformatic algorithms predicting what mutated peptides will be highly affine to human leukocyte antigen autologous molecules with subsequent activation of the immune response.

About the Authors

M. A. Baryshnikova
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

24 Kashirskoe Shosse, Moscow 115478



E. N. Kosobokova
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

24 Kashirskoe Shosse, Moscow 115478



V. S. Kosorukov
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

24 Kashirskoe Shosse, Moscow 115478



References

1. Bobisse S., Foukas P.G., Coukos G., Harari A. Neoantigen-based cancer immunotherapy. Ann Transl Med 2016;4(14):262. DOI: 10.21037/atm.2016.06.17. PMID: 27563649.

2. Robbins P.F., El-Gamil M., Li Y.F. et al. A mutated beta-catenin gene encodes a melanoma-specific antigen recognized by tumor infiltrating lymphocytes. J Exp Med 1996;183(3):1185–92. PMID: 8642260.

3. Mandruzzato S., Brasseur F., Andry G. et al. A CASP-8 mutation recognized by cytolytic T lymphocytes on a human head and neck carcinoma. J Exp Med 1997;186(5):785–93. PMID: 9271594.

4. Saeterdal I., Bjørheim J., Lislerud K. et al. Frameshift-mutation-derived peptides as tumor-specific antigens in inherited and spontaneous colorectal cancer. Proc Natl Acad Sci USA 2001;98(23):13255–60. DOI: 10.1073/pnas.231326898. PMID: 11687624.

5. Overwijk W.W., Wang E., Marincola F.M. et al. Mining the mutanome: developing highly personalized Immunotherapies based on mutational analysis of tumors. J Immunother Cancer 2013;1:11. DOI: 10.1186/2051-1426-1-11. PMID: 24829748.

6. Alexandrov L.B., Nil-Zainai S., Wedge D.C. et al. Signatures of mutational processes in human cancer. Nature 2013;500(7463):415–21. DOI: 10.1038/nature12477. PMID: 23945592.

7. Gubin M.M., Zhang X., Schuster H. et al. Checkpoint Blockade Cancer Immunotherapy Targets Tumour- Specific Mutant Antigens. Nature 2014;515(7528):577–81. DOI: 10.1038/nature13988. PMID: 25428507.

8. Pfeifer G.P. Environmental exposures and mutational patterns of cancer genomes. Genome Med 2010;2(8):54. DOI: 10.1186/gm175. PMID: 20707934.

9. Heemskerk B., Kvistborg P., Schumacher T.N. The cancer antigenome. EMBO J 2013;32(2):194–203. DOI: 10.1038/emboj.2012.333. PMID: 23258224.

10. McGranahan N., Furness A.J., Rosenthal R. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351(6280):1463–9. DOI: 10.1126/science.aaf1490. PMID: 26940869.

11. Le D.T., Uram J.N., Wang H. et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N Engl J Med 2015;372(26):2509–20. DOI: 10.1056/NEJMoa1500596. PMID: 26028255.

12. Nielsen M., Lundegaard C., Blicher T. et al. NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence. PLoS One 2007;2(8):e796. DOI: 10.1371/journal.pone.0000796. PMID: 17726526.

13. Castle J.C., Kreiter S., Diekmann J. et al. Exploiting the Mutanome for Tumor Vaccination. Cancer Res 2012;72(5):1081–91. DOI: 10.1158/0008-5472.CAN-11-3722. PMID: 22237626.

14. Matsushita H., Vesely M.D., Koboldt D.C. et al. Cancer Exome Analysis Reveals a T Cell Dependent Mechanism of Cancer Immunoediting. Nature 2013;482(7385):400–4. DOI: 10.1038/nature10755. PMID: 22318521.

15. Robbins P.F., Lu Y.C., El-Gamil M. et al. Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med 2013;19(6):747–52. DOI: 10.1038/nm.3161. PMID: 23644516.

16. Duan F., Duitama J., Al Seesi S. et al. Genomic and bioinformatic profiling of mutational neoepitopes reveals new rules to predict anticancer immunogenicity. J Exp Med 2014;211(11):2231–48. DOI: 10.1084/jem.20141308. PMID: 25245761.

17. Yadav M., Jhunjhunwala S., Phung Q.T. et al. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 2014;515(7528):572–6. DOI: 10.1038/nature14001. PMID: 25428506.

18. Kreiter S., Vormehr M., van de Roemer N. et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 2015;520(7549):692–6. DOI: 10.1038/nature14426. PMID: 25901682.

19. Cohen C.J., Gartner J.J., Horovitz-Fried M. et al. Isolation of neoantigen-specific T cells from tumor and peripheral lymphocytes. Clin Invest 2015;125(10):3981–91. DOI: 10.1172/JCI82416. PMID: 26389673.

20. Pritchard A.L., Burel J.G., Neller M.A. et al. Exome Sequencing to Predict Neoantigens in Melanoma. Cancer Immunol Res 2015;3(9):992–8. DOI: 10.1158/2326-6066.CIR-15-0088. PMID: 26048577.

21. Boisguérin V., Castle J.C., Loewer M. et al. Translation of genomics-guided RNA-based personalised cancer vaccines: towards the bedside. Br J Cancer 2014;111(8):1469–75. DOI: 10.1038/bjc.2013.820. PMID: 25314223.

22. Kranz L.M., Diken M., Haas H. et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 2016;534(7607): 396–401. DOI: 10.1038/nature18300. PMID: 27281205.

23. Ott P.A., Hu Z., Keskin D.B. et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 2017;547(7662):217–21. DOI: 10.1038/nature22991. PMID: 28678778.

24. Sahin U., Derhovanessian E., Miller M. et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 2017;547(7662):222–6. DOI: 10.1038/nature23003. PMID: 28678784.

25. Sonntag K., Hashimoto H., Eyrich M. et al. Immune monitoring and TCR sequencing of CD4 T cells in a long term responsive patient with metastasized pancreatic ductal carcinoma treated with individualized, neoepitope-derived multipeptide vaccines: a case report. J Transl Med 2018;16(1):23. DOI: 10.1186/s12967-018-1382-1. PMID: 29409514.

26. Temizoz B., Kuroda E., Ishii K.J. Vaccine adjuvants as potential cancer immunotherapeutics. Int Immunol 2016;28(7):329–38. DOI: 10.1093/intimm/dxw015. PMID: 27006304.

27. Kawai T., Akira S. The role of patterrecognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 2010;11(5):373–84. DOI: 10.1038/ni.1863. PMID: 20404851.

28. Matsumoto M., Takeda Y., Tatematsu M., Seya T. Toll-Like Receptor 3 Signal in Dendritic Cells Benefits Cancer Immunotherapy. Front. Immunol 2017;8:1897. DOI: 10.3389/fimmu.2017.01897. PMID: 29312355.

29. Matsumoto M., Tatematsu M., Nishikawa F. et al. Defined TLR3-specific adjuvant that induces NK and CTL activation without significant cytokine production in vivo. Nat. Commun 2015;6:6280. DOI: 10.1038/ncomms7280. PMID: 25692975.

30. Caskey M., Lefebvre F., Filali Mouhim A. et al. Synthetic double-stranded RNA induces innate immune responses similar to a live viral vaccine in humans. J Exp Med 2017;208(12): 2357–66. DOI: 10.1084/jem.20111171. PMID: 22065672.

31. Damo M., Wilson D.S., Simeoni E., Hubbell J.A. TLR-3 stimulation improves anti-tumor immunity elicited by dendritic cell exosome-based vaccines in a murine model of melanoma. Sci Rep 2015;5:17622. DOI: 10.1038/srep17622. PMID: 26631690.

32. Jasani B., Navabi H., Adams M. Ampligen: a potential toll-like 3 receptor adjuvant for immunotherapy of cancer. Vaccine 2009;27(25–26):3401–4. DOI: 10.1016/j.vaccine.2009.01.071. PMID: 19200817.

33. Small E.J., Fratesi P., Reese D.M. et al. Immunotherapy of hormone-refractory prostate cancer with antigen-loaded dendritic cells. J Clin Oncol 2000;18(23):3894–903. DOI: 10.1200/JCO.2000.18.23.3894. PMID: 11099318.

34. Kaufman H.L., Ruby C.E., Hughes T. et al. Current status of granulocyte-macrophage colony-stimulating factor in the immunotherapy of melanoma. J Immunother Cancer 2014;2:11. DOI: 10.1186/2051-1426-2-11. PMID: 24971166.

35. Kuai R., Ochyl L.J., Bahjat K.S. et al. Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat Mater 2017;16(4):489–96. DOI: 10.1038/nmat4822. PMID: 28024156.


Review

For citations:


Baryshnikova M.A., Kosobokova E.N., Kosorukov V.S. Neoantigens in tumor immunotherapy. Russian Journal of Biotherapy. 2018;17(2):6-14. (In Russ.) https://doi.org/10.17650/1726-9784-2018-17-2-6-14

Views: 1517


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1726-9784 (Print)
ISSN 1726-9792 (Online)