Метформин: новые перспективыв химиопрофилактике и терапии рака
https://doi.org/10.17650/1726-9784-2018-17-3-12-19
Аннотация
Об авторах
А. В. ШестаковРоссия
634050 Томск, Московский тракт, 2
Т. В. Саприна
Россия
Татьяна Владимировна Саприна
634050 Томск, Московский тракт, 2
И. А. Ануфрак
Россия
634050 Томск, Московский тракт, 2
О. Э. Гончикова
Россия
634050 Томск, Московский тракт, 2
А. Л. Чернышева
Россия
Россия, 634028 Томск, ул. Савиных, 12/1
Список литературы
1. Sui X., Xu Y., Wang X. et al. Metformin: A Novel but Controversial Drug in Cancer Prevention and Treatment. Mol Pharm 2015;12(11):3783–91. DOI:10.1021/acs.molpharmaceut.5b00577. PMID:26430787.
2. He H., Ke R., Lin H. et al. Metform in, an old drug, brings a new era to cancer therapy. Cancer J. 2015;21(2):70–4. DOI:10.1097/PPO.0000000000000103.PMID:25815846.
3. Morales D.R., Morris A.D. Metformin in Cancer Treatment and Prevention. Ann Rev Med. 2015;66(1):17–29. DOI:10.1146/annurev-med-062613-093128. PMID:25386929.
4. Coperchini F., Leporati P., Rotondi M., Chiovato L. Expanding the therapeutic spectrum of metformin: From diabetes to cancer. J Endocrinol Invest 2015;38(10):1047–55. DOI:10.1007/s40618-015-0370-z. PMID:26233338.
5. Tsilidis K.K., Kasimis J.C., Lopez D.S. et al. Type 2 diabetes and cancer: umbrella review of meta-analyses of observational studies. BMJ 2015;350(January):g7607. DOI:10.1136/bmj.g7607. PMID:25555821.
6. Singh P., Alex J.M., Bast F. Insulin receptor (IR) and insulin-like growth factor receptor 1 (IGF-1R) signaling systems: Novel treatment strategies for cancer. Med Oncol 2014;31(1):805. DOI:10.1007/s12032-013-0805-3. PMID:24338270.
7. Kato H., Sekine Y., Furuya Y. et al. Metformin inhibits the proliferation of human prostate cancer PC-3 cells via the downregulation of insulin-like growth factor 1 receptor. Biochem Biophys Res Commun 2015;461(1):115–21. DOI:10.1016/j.bbrc.2015.03.178. PMID:25862373.
8. Mughal A., Kumar D., Vikram A. Effects of Thiazolidinediones on metabolism and cancer: Relative influence of PPARγ and IGF-1 signaling. Eur J Pharmacol 2015;768:217–25. DOI:10.1016/j.ejphar.2015.10.057. PMID:26542126.
9. Li W., Saud S.M., Young M.R. et al. Targeting AMPK for cancer prevention and treatment. Oncotarget. 2015;6(10):7365–78. DOI:10.18632/oncotarget.3629. PMID:25812084.
10. Rizos C.V., Elisaf M.S. Metformin and cancer. Eur J Pharmacol. 2013;705(1–3): 96–108. DOI:10.1016/j.ejphar.2013.02.038. PMID:23499688.
11. Angeles T.S., Hudkins R.L. Recent advances in targeting the fatty acidbiosynthetic pathway using fatty acid synthase inhibitors. Expert Opin Drug Discov. 2016;11(12):1187–99. DOI:10.1080/17460441.2016.1245286. PMID:27701891.
12. Gambhir S., Vyas D., Hollis M. et al. Nuclear factor kappa B role in inflammation associated gastrointestinal malignancies. WorldJ Gastroenterol 2015;21(11):3174–83. DOI:10.3748/wjg.v21.i11.3174. PMID:25805923.
13. Bijland S., Mancini S.J., Salt I.P. Role of AMP-activated protein kinase in adipose tissue metabolism and inflammation. Clin Sci 2013;124(8):491–507. DOI:10.1042/CS20120536. PMID:23298225.
14. Vansaun M.N. Molecular pathways: adiponectin and leptin signaling in cancer. Clin Cancer Res 2013;19(8):1926–32. DOI:10.1158/1078-0432.CCR-12-0930. PMID:23355630.
15. Hirsch H.A., Iliopoulos D., Struhl K. Metformin inhibits the inflammatory response associated with cellular transformation and cancer stem cell growth. Proc Natl Acad Sci USA2013;110(3):972–7. DOI:10.1073/pnas.1221055110. PMID:23277563.
16. Qu C., Zhang W., Zheng G. et al. Metformin reverses multidrug resistance and epithelial-mesenchymal transition (EMT) via activating AMP-activated protein kinase (AMPK) in human breast cancer cells. Mol Cell Biochem. 2014;386(1–2):63–71. DOI:10.1007/s11010-013-1845-x. PMID:24096736.
17. Zhang R., Zhang P., Wang H. et al. Inhibitory effects of metformin at low concentration on epithelial – mesenchymal transition of CD44+CD117+ovarian cancer stem cells. Stem Cell Res Ther 2015;6(1):262. DOI:10.1186/s13287-015-0249-0. PMID:26718286.
18. Zhang J., Shen C., Wang L. et al. Metformin inhibits epithelialmesenchymal transition in prostate cancer cells: Involvement of the tumor suppressor miR30a and its target gene SOX4. Biochem Biophys Res Commun. 2014;452(3):746–52. DOI:10.1016/j.bbrc.2014.08.154. PMID: 25201727.
19. Leonel C., Borin T.F., de Carvalho Ferreira L. et al. Inhibition of Epithelial-Mesenchymal Transition and Metastasis by Combined TGFbeta Knockdown and Metformin Treatment in a Canine Mammary Cancer Xenograft Model. J Mammary Gland Biol Neoplasia 2017;22(1):27–41. DOI: 10.1007/s10911-016-9370-7. PMID: 28078601.
20. Liu Q., Tong D., Liu G. et al. Metformin reverses prostate cancer resistance to enzalutamide by targeting TGF-β1/STAT3 axis-regulated EMT. Cell Death Dis 2017;8(8):e3007. DOI:10.1038/cddis.2017.417. PMID:28837141.
21. Tong D., Liu Q., Liu G. et al. Metformin inhibits castration-induced EMT in prostate cancer by repressing COX2/PGE2/STAT3 axis. Cancer Lett 2017;389:23–32. DOI:10.1016/j.canlet.2016.12.031. PMID:28043910.
22. Markowska A., Pawałowska M., Filas V. et al. Does Metformin affect ER, PR, IGF-1R, β-catenin and PAX-2 expression in women with diabetes mellitus and endometrial cancer? Diabetol Metab Syndr 2013;5(1):1–11. DOI:10.1186/1758-5996-5-76. PMID:24308813.
23. Helguero L.A., Faulds M.H., Gustafsson J.Å., Haldosén L.A. Estrogenreceptors alfa (ERα) and beta (ERβ) differentially regulate proliferation and apoptosis of the normal murine mammary epithelial cell line HC11.Oncogene 2005;24(44):6605–16. DOI:10.1038/sj.onc.1208807. PMID:16007178.
24. Zhang J., Xu H., Zhou X. et al. Role of metformin in inhibiting estrogeninduced proliferation and regulating ERalpha and ERbeta expression in human endometrial cancer cells. Oncol Lett 2017;14(4):4949–56. DOI:10.3892/ol.2017.6877. PMID:29085506.
25. Gu C.J., Cheng J., Zhang B. et al. Protopanaxadiol and metformin synergistically inhibit estrogen-mediated proliferation and anti-autophagy effects in endometrial cancer cells. Am J TranslRes 2017;9(9):4071–82. PMID:28979682.
26. Ванюшин Б.Ф. Эпигенетика сегодня и завтра. Вавиловский журнал генетики и селекции 2013;17(4/2):805–32.
27. Moore L.D., Le T., Fan G. DNA methylation and its basic function. Neuropsychopharmacology 2013;38(1):23–38. DOI:10.1038/npp.2012.112. PMID:22781841.
28. Шуматова Т.А., Приходченко Н.Г., Оденбах Л.А., Ефремова И.В. Роль метилирования ДНК и состояния фолатного обмена в развитии патологических процессов в организме человека. Тихоокеанский медицинский журнал 2013;4:39–43.
29. Кабанов И.Н., Тищенко Л.И. Изменение метилирования ДНК повторяющихся последовательностей и однокопийных генов при онкологическихи некоторых других заболеваниях человека. ВестникСанкт-Петербургского университета. Медицина.2014;3(3):62–83.
30. Joyce B.T., Gao T., Zheng Y. et al. Prospective changes in global DNA methylation and cancer incidence and mortality. Br J Cancer 2016;115(4):465–72. DOI: 10.1038/bjc.2016.205.
31. Cuyàs E., Fernández-Arroyo S., Verdura S. et al. Metformin regulates global DNA methylation via mitochondrial one-carbon metabolism. Oncogene 2017:1–8. DOI:10.1038/onc.2017.367. PMID:29059169.
32. Barchitta M., Quattrocchi A., Maugeri A. et al. LINE-1 hypomethylation in blood and tissue samples as an epigenetic marker for cancer risk: A systematic review and meta-analysis. PLoS One 2014;9(10): e109478. DOI:10.1371/journal.pone.0109478. PMID:25275447.
33. Zhong T., Men Y., Lu L. et al. Metformin alters DNA methylation genome-wide via the H19/SAHH axis. Oncogene 2017;36(17):2345–54. DOI:10.1038/onc.2016.391. PMID:27775072.
34. Yan L., Zhou J., Gao Y. et al. Regulation of tumor cell migration and invasion byt he H19/let-7 axis is antagonized by metformin-induced DNA methylation. Oncogene 2015;34(23):3076–84. DOI:10.1038/onc.2014.236. PMID:25088204.
35. Guo J., Xu K., An M., Zhao Y. Metformin and endometrial cancer survival: a quantitative synthesis of observational studies. Oncotarget 2017;8(39):66169–77. DOI:10.18632/oncotarget.19830. PMID:29029501.
36. Muszyńska-OgłazaA., Zarzycka-LindnerG., OlejniczakH. etal. Use of metformin is associated with lower incidence of cancer in patients with type 2 diabetes. Endokrynol Pol. 2017. DOI:10.5603/EP.a2017.0054. PMID:29022647.
37. Nevadunsky N.S., Van Arsdale A., Strickler H.D. et al. Metformin use and endometrial cancer survival. Gynecol Oncol. 2014;132(1):236–40. DOI:10.1016/j.ygyno.2013.10.026.
38. Provinciali N., Lazzeroni M., Cazzaniga M. et al. Metformin: riskbenefit profile with a focus on cancer. Expert Opin Drug Saf. 2015;14(10):1573–85. DOI:10.1517/14740338.2015.1084289. PMID: 26359221.
39. Meireles C.G., Pereira S.A., Valadares L.P. et al. Effects of metformin on endometrial cancer: Systematic review and meta-analysis. Gynecol Oncol. 2017;147(1):167–80. DOI:10.1016/j.ygyno.2017.07.120. PMID: 28760367.
40. Kim H.J., Kwon H., Lee J.W. et al. Metformin increases survival in hormone receptor-positive, HER2-positive breast cancer patients with diabetes. Breast Cancer Res. 2015;17(1):64. DOI:10.1186/s13058-015-0574-3. PMID: 25935404.
41. Chen L., Chubak J., Boudreau D.M. et al. Diabetes Treatments and Risks of Adverse Breast Cancer Outcomes among Early-Stage Breast Cancer Patients: A SEER-Medicare Analysis. Cancer Res. 2017;77(21):6033–41. DOI:10.1158/0008-5472.CAN-17-0687. PMID: 28935814.
42. Xu H., Chen K., Jia X. et al. Metformin Use Is Associated With Better Survival of Breast Cancer Patients With Diabetes: A Meta-Analysis.Oncologist. 2015;20(11):1236–44. DOI:10.1634/theoncologist.2015-0096. PMID:26446233.
43. Залетаев Д.В., Стрельников В.В., Немцова М.В. и др. Структурно-функциональный анализ опухолевых геномов и разработка тест-систем для ранней диагностики, прогноза течения и оптимизации терапии злокачественных новообразований. Вестник РАМН 2013;(9):7–14. PMID:24624866.
44. Сорокина Ю.А. Фармакогенетические аспекты эффективности метформина при сахарном диабете 2 типа: дис. ... канд. биол. наук.Томск, 2016. 25 с.
45. Берштейн Л.М., Васильев Д.А., Иевлева А.Г. и др. Гормонально-метаболические и генетические маркеры чувствительности к метформину при диабете и раке: предсказание и реальность. Сахарный диабет 2014;1:21–8. DOI:10.14341/DM2014121–28.
46. Dujic T., Causevic A., Bego T. et al. Organic cation transporter 1 variants and gastrointestinal side effects of metformin in patients with Type 2 diabetes. Diabet Med. 2016;33(4):511–4. DOI:10.1111/dme.13040. PMID: 26605869.
47. Tarasova L., Kalnina I., Geldnere K. et al. Association of genetic variation in the organic cation transporters OCT1, OCT2 and multidrug and toxin extrusion 1 transporter protein genes with the gastrointestinal side effects and lower BMI in metformin-treated type 2 diabetes patients. Pharmacogenet Genomics2012;22(9):659–66. DOI:10.1097/FPC.0b013e3283561666. PMID:22735389.
48. Dujic T., Zhou K., Tavendale R. et al. Effect of serotonin transporter 5-HTTLPR polymorphism on gastrointestinal intolerance to metformin: A GoDARTS study. Diabetes Care. 2016;39(11): 1896–901. DOI:10.2337/dc16-0706. PMID:27493135.
49. Jara J.A., López-Muñoz R. Metformin and cancer: Between the bioenergetic disturbances and the antifolate activity. Pharmacol Res. 2015;101:102–8. DOI:10.1016/j.phrs.2015.06.014. PMID:26277279.
Рецензия
Для цитирования:
Шестаков А.В., Саприна Т.В., Ануфрак И.А., Гончикова О.Э., Чернышева А.Л. Метформин: новые перспективыв химиопрофилактике и терапии рака. Российский биотерапевтический журнал. 2018;17(3):12-19. https://doi.org/10.17650/1726-9784-2018-17-3-12-19
For citation:
Shestakov A.V., Saprina T.V., Anufrak I.A., Gonchikova O.E., Chernysheva A.L. Metformin: new perspectives in chemoprevention and therapy of cancer. Russian Journal of Biotherapy. 2018;17(3):12-19. (In Russ.) https://doi.org/10.17650/1726-9784-2018-17-3-12-19