Preview

Metformin: new perspectives in chemoprevention and therapy of cancer

https://doi.org/10.17650/1726-9784-2018-17-3-12-19

Abstract

According to modern data, metformin is a unique drug, which can act not only as sugar-reducing medicine, but also as an antiproliferative element. More and more new researches about metformin effects in oncologic patients appear during last decades. A lot of researchers suppose that metformin is a new promising medicine for chemopreventive and neoadjuvant cancer therapy. This literature review covers current researches of metformin in context of it»s possible antiproliferative effects.

About the Authors

A. V. Shestakov
Siberian State Medical University, Ministry of Health of Russia
Russian Federation

2 Moskovskiy Trakt, Tomsk, 634050, Russia



T. V. Saprina
Siberian State Medical University, Ministry of Health of Russia
Russian Federation

2 Moskovskiy Trakt, Tomsk, 634050, Russia



I. A. Anufrak
Siberian State Medical University, Ministry of Health of Russia
Russian Federation

2 Moskovskiy Trakt, Tomsk, 634050, Russia



O. E. Gonchikova
Siberian State Medical University, Ministry of Health of Russia
Russian Federation

2 Moskovskiy Trakt, Tomsk, 634050, Russia



A. L. Chernysheva
Tomsk National Research Medical Center, Russian Academy of Medical Sciences, Oncology Research Institute
Russian Federation

12/1 Savinykh St., Tomsk, 634028



References

1. Sui X., Xu Y., Wang X. et al. Metformin: A Novel but Controversial Drug in Cancer Prevention and Treatment. Mol Pharm 2015;12(11):3783–91. DOI:10.1021/acs.molpharmaceut.5b00577. PMID:26430787.

2. He H., Ke R., Lin H. et al. Metform in, an old drug, brings a new era to cancer therapy. Cancer J. 2015;21(2):70–4. DOI:10.1097/PPO.0000000000000103.PMID:25815846.

3. Morales D.R., Morris A.D. Metformin in Cancer Treatment and Prevention. Ann Rev Med. 2015;66(1):17–29. DOI:10.1146/annurev-med-062613-093128. PMID:25386929.

4. Coperchini F., Leporati P., Rotondi M., Chiovato L. Expanding the therapeutic spectrum of metformin: From diabetes to cancer. J Endocrinol Invest 2015;38(10):1047–55. DOI:10.1007/s40618-015-0370-z. PMID:26233338.

5. Tsilidis K.K., Kasimis J.C., Lopez D.S. et al. Type 2 diabetes and cancer: umbrella review of meta-analyses of observational studies. BMJ 2015;350(January):g7607. DOI:10.1136/bmj.g7607. PMID:25555821.

6. Singh P., Alex J.M., Bast F. Insulin receptor (IR) and insulin-like growth factor receptor 1 (IGF-1R) signaling systems: Novel treatment strategies for cancer. Med Oncol 2014;31(1):805. DOI:10.1007/s12032-013-0805-3. PMID:24338270.

7. Kato H., Sekine Y., Furuya Y. et al. Metformin inhibits the proliferation of human prostate cancer PC-3 cells via the downregulation of insulin-like growth factor 1 receptor. Biochem Biophys Res Commun 2015;461(1):115–21. DOI:10.1016/j.bbrc.2015.03.178. PMID:25862373.

8. Mughal A., Kumar D., Vikram A. Effects of Thiazolidinediones on metabolism and cancer: Relative influence of PPARγ and IGF-1 signaling. Eur J Pharmacol 2015;768:217–25. DOI:10.1016/j.ejphar.2015.10.057. PMID:26542126.

9. Li W., Saud S.M., Young M.R. et al. Targeting AMPK for cancer prevention and treatment. Oncotarget. 2015;6(10):7365–78. DOI:10.18632/oncotarget.3629. PMID:25812084.

10. Rizos C.V., Elisaf M.S. Metformin and cancer. Eur J Pharmacol. 2013;705(1–3): 96–108. DOI:10.1016/j.ejphar.2013.02.038. PMID:23499688.

11. Angeles T.S., Hudkins R.L. Recent advances in targeting the fatty acidbiosynthetic pathway using fatty acid synthase inhibitors. Expert Opin Drug Discov. 2016;11(12):1187–99. DOI:10.1080/17460441.2016.1245286. PMID:27701891.

12. Gambhir S., Vyas D., Hollis M. et al. Nuclear factor kappa B role in inflammation associated gastrointestinal malignancies. WorldJ Gastroenterol 2015;21(11):3174–83. DOI:10.3748/wjg.v21.i11.3174. PMID:25805923.

13. Bijland S., Mancini S.J., Salt I.P. Role of AMP-activated protein kinase in adipose tissue metabolism and inflammation. Clin Sci 2013;124(8):491–507. DOI:10.1042/CS20120536. PMID:23298225.

14. Vansaun M.N. Molecular pathways: adiponectin and leptin signaling in cancer. Clin Cancer Res 2013;19(8):1926–32. DOI:10.1158/1078-0432.CCR-12-0930. PMID:23355630.

15. Hirsch H.A., Iliopoulos D., Struhl K. Metformin inhibits the inflammatory response associated with cellular transformation and cancer stem cell growth. Proc Natl Acad Sci USA2013;110(3):972–7. DOI:10.1073/pnas.1221055110. PMID:23277563.

16. Qu C., Zhang W., Zheng G. et al. Metformin reverses multidrug resistance and epithelial-mesenchymal transition (EMT) via activating AMP-activated protein kinase (AMPK) in human breast cancer cells. Mol Cell Biochem. 2014;386(1–2):63–71. DOI:10.1007/s11010-013-1845-x. PMID:24096736.

17. Zhang R., Zhang P., Wang H. et al. Inhibitory effects of metformin at low concentration on epithelial – mesenchymal transition of CD44+CD117+ovarian cancer stem cells. Stem Cell Res Ther 2015;6(1):262. DOI:10.1186/s13287-015-0249-0. PMID:26718286.

18. Zhang J., Shen C., Wang L. et al. Metformin inhibits epithelialmesenchymal transition in prostate cancer cells: Involvement of the tumor suppressor miR30a and its target gene SOX4. Biochem Biophys Res Commun. 2014;452(3):746–52. DOI:10.1016/j.bbrc.2014.08.154. PMID: 25201727.

19. Leonel C., Borin T.F., de Carvalho Ferreira L. et al. Inhibition of Epithelial-Mesenchymal Transition and Metastasis by Combined TGFbeta Knockdown and Metformin Treatment in a Canine Mammary Cancer Xenograft Model. J Mammary Gland Biol Neoplasia 2017;22(1):27–41. DOI: 10.1007/s10911-016-9370-7. PMID: 28078601.

20. Liu Q., Tong D., Liu G. et al. Metformin reverses prostate cancer resistance to enzalutamide by targeting TGF-β1/STAT3 axis-regulated EMT. Cell Death Dis 2017;8(8):e3007. DOI:10.1038/cddis.2017.417. PMID:28837141.

21. Tong D., Liu Q., Liu G. et al. Metformin inhibits castration-induced EMT in prostate cancer by repressing COX2/PGE2/STAT3 axis. Cancer Lett 2017;389:23–32. DOI:10.1016/j.canlet.2016.12.031. PMID:28043910.

22. Markowska A., Pawałowska M., Filas V. et al. Does Metformin affect ER, PR, IGF-1R, β-catenin and PAX-2 expression in women with diabetes mellitus and endometrial cancer? Diabetol Metab Syndr 2013;5(1):1–11. DOI:10.1186/1758-5996-5-76. PMID:24308813.

23. Helguero L.A., Faulds M.H., Gustafsson J.Å., Haldosén L.A. Estrogenreceptors alfa (ERα) and beta (ERβ) differentially regulate proliferation and apoptosis of the normal murine mammary epithelial cell line HC11.Oncogene 2005;24(44):6605–16. DOI:10.1038/sj.onc.1208807. PMID:16007178.

24. Zhang J., Xu H., Zhou X. et al. Role of metformin in inhibiting estrogeninduced proliferation and regulating ERalpha and ERbeta expression in human endometrial cancer cells. Oncol Lett 2017;14(4):4949–56. DOI:10.3892/ol.2017.6877. PMID:29085506.

25. Gu C.J., Cheng J., Zhang B. et al. Protopanaxadiol and metformin synergistically inhibit estrogen-mediated proliferation and anti-autophagy effects in endometrial cancer cells. Am J TranslRes 2017;9(9):4071–82. PMID:28979682.

26. Vanyushin B.F. Epigenetics today and tomorrow. Vavilovskiy zhurnal genetiki I selektsii = Vavilov journal of genetics and breeding 2013;17(4/2):805–32 (In Russ.)

27. Moore L.D., Le T., Fan G. DNA methylation and its basic function. Neuropsychopharmacology 2013;38(1):23–38. DOI:10.1038/npp.2012.112. PMID:22781841.

28. Shumatova T.A., Prikhodchenko N.G., Odenbakh L.A., Efremova I.V. Role of DNA methylation and folate metabolism in the development of pathological processes in the human body. Tihookeanskiy medicinskiy zhurnal = Pacific Medical Journal 2013;4:39–43 (In Russ.)

29. Kabanov I.N., Tishchenko L.I. Changing the DNA methylation of repetitive sequences and single-copy genes in cancer and other human diseases. Vestnik Sankt-Peterburgskogo universiteta = Bulletin of Saint Petersburg University. Medicine. 2014;3(3):62–83 (In Russ)

30. Joyce B.T., Gao T., Zheng Y. et al. Prospective changes in global DNA methylation and cancer incidence and mortality. Br J Cancer 2016;115(4):465–72. DOI: 10.1038/bjc.2016.205.

31. Cuyàs E., Fernández-Arroyo S., Verdura S. et al. Metformin regulates global DNA methylation via mitochondrial one-carbon metabolism. Oncogene 2017:1–8. DOI:10.1038/onc.2017.367. PMID:29059169.

32. Barchitta M., Quattrocchi A., Maugeri A. et al. LINE-1 hypomethylation in blood and tissue samples as an epigenetic marker for cancer risk: A systematic review and meta-analysis. PLoS One 2014;9(10): e109478. DOI:10.1371/journal.pone.0109478. PMID:25275447.

33. Zhong T., Men Y., Lu L. et al. Metformin alters DNA methylation genome-wide via the H19/SAHH axis. Oncogene 2017;36(17):2345–54. DOI:10.1038/onc.2016.391. PMID:27775072.

34. Yan L., Zhou J., Gao Y. et al. Regulation of tumor cell migration and invasion byt he H19/let-7 axis is antagonized by metformin-induced DNA methylation. Oncogene 2015;34(23):3076–84. DOI:10.1038/onc.2014.236. PMID:25088204.

35. Guo J., Xu K., An M., Zhao Y. Metformin and endometrial cancer survival: a quantitative synthesis of observational studies. Oncotarget 2017;8(39):66169–77. DOI:10.18632/oncotarget.19830. PMID:29029501.

36. Muszyńska-OgłazaA., Zarzycka-LindnerG., OlejniczakH. etal. Use of metformin is associated with lower incidence of cancer in patients with type 2 diabetes. Endokrynol Pol. 2017. DOI:10.5603/EP.a2017.0054. PMID:29022647.

37. Nevadunsky N.S., Van Arsdale A., Strickler H.D. et al. Metformin use and endometrial cancer survival. Gynecol Oncol. 2014;132(1):236–40. DOI:10.1016/j.ygyno.2013.10.026.

38. Provinciali N., Lazzeroni M., Cazzaniga M. et al. Metformin: riskbenefit profile with a focus on cancer. Expert Opin Drug Saf. 2015;14(10):1573–85. DOI:10.1517/14740338.2015.1084289. PMID: 26359221.

39. Meireles C.G., Pereira S.A., Valadares L.P. et al. Effects of metformin on endometrial cancer: Systematic review and meta-analysis. Gynecol Oncol. 2017;147(1):167–80. DOI:10.1016/j.ygyno.2017.07.120. PMID: 28760367.

40. Kim H.J., Kwon H., Lee J.W. et al. Metformin increases survival in hormone receptor-positive, HER2-positive breast cancer patients with diabetes. Breast Cancer Res. 2015;17(1):64. DOI:10.1186/s13058-015-0574-3. PMID: 25935404.

41. Chen L., Chubak J., Boudreau D.M. et al. Diabetes Treatments and Risks of Adverse Breast Cancer Outcomes among Early-Stage Breast Cancer Patients: A SEER-Medicare Analysis. Cancer Res. 2017;77(21):6033–41. DOI:10.1158/0008-5472.CAN-17-0687. PMID: 28935814.

42. Xu H., Chen K., Jia X. et al. Metformin Use Is Associated With Better Survival of Breast Cancer Patients With Diabetes: A Meta-Analysis.Oncologist. 2015;20(11):1236–44. DOI:10.1634/theoncologist.2015-0096. PMID:26446233.

43. Zaletaev D.V., Strel’nikov V.V., Nemtsova M.V. et al. Structural and functional analysis of tumor genomes and the development of test systems for early diagnosis, prognosis and cancer therapy optimization. Vestnik RAMN = Annals of the Russian Academy of Medical Sciences. 2013;(9):7–14. (In Russ.)

44. Sorokina Yu.A. Phar macogenetic aspects of Metformin efficacy in type 2 diabetes mellitus: PhD dissertation (Biology), Goldberg Research Institute of Pharmacology and Regenerative Medicine. Tomsk, 2016 (In Russ.)

45. Bershteyn L.M., Vasilyev D.A., Ievleva A.G. et al. Hormonal, metabolic and genetic predictors of metformin efficacy in patients with diabetes mellitus and cancer. Saharniy diabet = Diabetes mellitus 2014;1:21–8 (In Russ)

46. Dujic T., Causevic A., Bego T. et al. Organic cation transporter 1 variants and gastrointestinal side effects of metformin in patients with Type 2 diabetes. Diabet Med. 2016;33(4):511–4. DOI:10.1111/dme.13040. PMID: 26605869.

47. Tarasova L., Kalnina I., Geldnere K. et al. Association of genetic variation in the organic cation transporters OCT1, OCT2 and multidrug and toxin extrusion 1 transporter protein genes with the gastrointestinal side effects and lower BMI in metformin-treated type 2 diabetes patients. Pharmacogenet Genomics2012;22(9):659–66. DOI:10.1097/FPC.0b013e3283561666. PMID:22735389.

48. Dujic T., Zhou K., Tavendale R. et al. Effect of serotonin transporter 5-HTTLPR polymorphism on gastrointestinal intolerance to metformin: A GoDARTS study. Diabetes Care. 2016;39(11): 1896–901. DOI:10.2337/dc16-0706. PMID:27493135.

49. Jara J.A., López-Muñoz R. Metformin and cancer: Between the bioenergetic disturbances and the antifolate activity. Pharmacol Res. 2015;101:102–8. DOI:10.1016/j.phrs.2015.06.014. PMID:26277279.


Review

For citations:


Shestakov A.V., Saprina T.V., Anufrak I.A., Gonchikova O.E., Chernysheva A.L. Metformin: new perspectives in chemoprevention and therapy of cancer. Russian Journal of Biotherapy. 2018;17(3):12-19. (In Russ.) https://doi.org/10.17650/1726-9784-2018-17-3-12-19

Views: 780


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1726-9784 (Print)
ISSN 1726-9792 (Online)