Crosstalk between autophagy and iron in melanoma progression
https://doi.org/10.17650/1726-9784-2018-17-3-29-35
Abstract
Introduction.Autophagy, a catabolic process of protein and organelle recycling by transferring defective cytoplasm and organelles into double-membraned vesicles to degrade and regenerate materials, plays a critical role in maintaining energy homeostasis. Inefficiency chemo-and radiotherapy is largely associated with the activation of autophagy. Among the metals needed by the living organism, iron occupies a special place. The rapid growth of malignant tumors requires much more iron than the metabolism of normal cells.
Objective.To elucidate the relationship between autophagy and iron in melanoma progression.
Materials and methods.In this study we used 2D- and 3D-culturing of melanoma cells with high expression of CD71 (mel P and mel Z) and low expression of CD71 (mel Gus and mel Ibr), flow cytometry and fluorescence microscopy.
Results.The uptake of iron in cancer cells occurs through translocation of the complex of transferrin/receptor (CD71) in the cytoplasm with subsequent dissociation of iron from the complex. Chelation of iron by deferroxamine in melanoma cells mel P and mel Z reduced the level of autophagy about 2-fold. In the presence of an iron donor ferrum ammonium citrate the level of autophagy increased 2.5- fold. The same correlation was observed in melanoma cells with low expression of CD71. Chelation of iron in melanoma cells with high CD71 expression blocked the formation of capillary-like structures. In the presence of an iron donor the formation of capillary-like structures was also not observed. The same correlation was observed in melanoma cells with low expression of CD71. There was an increase in CD105 expression about 50 ± 5 % and 800 ± 50 % under the condition of iron chelation in melanoma cells with high and low expression of CD71, respectively. Quite unexpectably, iron donor also increased expression of CD105 about 35 ± 4 % and 300 ± 3 % in melanoma cells with high and low expression of CD71, respectively
Conclusions.The activation of autophagy promotes the survival of tumor cells by triggering a number of metabolic functions with the participation of iron.
About the Authors
A. A. VartanianRussian Federation
24 Kashirskoe Shosse, Moscow 115478
O. S. Burova
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
Yu. A. Khochenkova
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
M. A. Baryshnikova
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
References
1. Mizushima N., Komatsu M. Autophagy: renovation of cells and tissues. Cell 2011;147(4):728–41. DOI:10.1016/j.cell.2011.10.026. PMID: 22078875.
2. Rabinowitz J.D., White E. Autophagy and metabolism. Science 2010;330(6009):1344–8. DOI:10.1126/science.1193497. PMID: 21127245.
3. Menzies F.M., Fleming A., Rubinsztein D.C. Compromised autophagy and neurodegenerative diseases. Nat Rev Neurosci 2015;16(6):345–57. DOI:10.1038/nrn3961. PMID: 25991442.
4. Sun K., Deng W., Zhang S. et al. Paradoxical roles of autophagy in different stages of tumorigenesis: protector for normal or cancer cells. Cell Biosci 2013;3(1):35–42. DOI:10.1186/2045-3701-3-35. PMID: 24016776.
5. Vartanian A.A., Burova O.S., Ulasov I.S., Baryshnikova M.A. The involvement of autophagy in melanoma vasculogenic mimicry. Rossiysky Bioterpevtichesky Zhurnal = Russian Journal of Biotherapy 2017;16(2):66–73. DOI:10.17650/1726-9784-2017-16-2-66-73. (In Russ.)
6. Vartanian A.A., Baryshnikova M.A.,Burova O.S. et al. Inhibitor of vasculogenic mimicry recovers the sensitivity of drug-resistant melanoma cells to DNA-damaging agents. Rossiysky Bioterpevtichesky Zhurnal = Russian Journal of Biotherapy 2016;15(1):19–20 (In Russ.)
7. Vartanian A.A., Khochenkov D.A., Burova O.S.Interaction between autophagy and iron in vasculogenic mimicry Rossiysky Bioterpevtichesky Zhurnal = Russian Journal of Biotherapy 2018;17(Special Issue):15 (In Russ.)
8. Reichert C.O., da Cunha J., Levy D. et al. Hepcidin: Homeostasis and Diseases Related to Iron Metabolism. Acta Haematol 2017;137(4):220–36. DOI:10.1159/000471838. PMID: 28514781.
9. Zhang D.L., Ghosh M.C., Rouault T.A. The physiological functions of iron regulatory proteins in iron homeostasis – an update. Front Pharmacol 2014;5:124–9. PMID: 24982634.
10. Munoz M., Villar I., Garcia-Erce J.A. An update on iron physiology. World J Gastroenterol 2009;15:4617–4626. PMID: 19787824.
11. Kleingardner J.G., Bren K.L. Biological significance and applications of heme proteins and peptides. Acc Chem Res 2015;48(7):1845–52. DOI:10.1021/acs.accounts.5b00106. PMID: 26083801.
12. Vartanian A.A. Iron metabolism, ferroptosis and cancer. Rossiysky Bioterpevtichesky Zhurnal = Russian Journal of Biotherapy 2017;16(3):14–20. DOI:10.17650/1726-9784-2017-16-3- 14-20. (In Russ.)
13. Mikhailova I.N., Lukashina M.I., Baryshnikov A.Yu. et al. Melanoma cell lines as the basis for antitumor vaccine preparation. Vestnik Rossiyskoy Akademii Meditsinskih Nauk = Bulletin of Russian Academy of Medical Sciences 2005;7:37–40. (In Russ.) 2005;7:37–40.
14. Khiroya H., Turner A.M. The role of iron in pulmonary pathology. Multidiscip Respir Med 2015;10:34. DOI:10.1186/s40248-015-0031-2. PMID: 26629341.
15. Calzolari A., Oliviero I., Deaglio S. et al. Transfetin receptor is frequently expressed in human cancer. Blood Cells Mol Dis 2007;39(1):82–91. PMID: 17428703.
16. Hendrix M.J., Seftor E.A., Seftor R.E. et al. Tumor vasculogenic mimicry: Novel targeting opportunity in melanoma. Pharmacol Ther 2016;159:83–92. DOI:10.1016/j.pharmthera.2016.01.006. PMID: 26808163.
17. Vartanian A., Stepanova E., Grigorieva I. et al. Melanoma Vasculogenic Mimicry Capillary-Like Structure Formation Depends on Integrin and Calcium Signaling. Microcirculation 2011;18(5):390–9. DOI:10.1111/j.1549-8719.2011.00102.
18. Dallas N.A., Samuel S., Xia L. et al. Endoglin (CD105): a marker of tumor vasculature and potential target fort herapy. Clin Cancer Res 2008;14(7): 1931–7. DOI:10.1158/1078-0432.CCR-07-4478. PMID: 18381930.
19. Altomonte M., Montagner R., Fonsatti E. et al. Expression and structural features of endoglin (CD105), a transforming growth factor beta1 and beta3 binding protein, in human melanoma. Br J Cancer 1996;74(10):1586–91. PMID: 8932339.
20. Salgado K.B., Toscani N.V., Silva L.L. et al. Immunoexpression of endoglin in brain metastasis secondary to malignant melanoma Clin Exp Metastasis 2007;24(6):403–10. DOI:10.1007/s10585-007-9077-7. PMID: 17564791.
21. Daniels-Wells T.R., Penichet M.L. Transferrin receptor 1: a target for antibody-mediated cancer therapy. Immunotherapy 2016;8(9):991–4. DOI:10.2217/imt-20160-0050. PMID: 27373880.
22. Schonberg D.L., Miller T.E., Wu Q. et al. Preferential Iron Trafficking Characterizes Glioblastoma Stem-like Cells. Cancer Cell 2015;28:441–55. PMID: 26461092.
Review
For citations:
Vartanian A.A., Burova O.S., Khochenkova Yu.A., Baryshnikova M.A. Crosstalk between autophagy and iron in melanoma progression. Russian Journal of Biotherapy. 2018;17(3):29-35. (In Russ.) https://doi.org/10.17650/1726-9784-2018-17-3-29-35