Preview

Recombinant human PRAME immunization reducesPRAME-expressing tumor growth in mice

https://doi.org/10.17650/1726-9784-2018-17-3-36-42

Abstract

Intrоduction.Human antigen PRAME is preferentially expressed in a number of different tumor types and may be a potent target for anti-tumor immunotherapy.

Purpose.To study anti-tumor action of immunogenic mix recombinant PRAME protein and adjuvant in mice with innate immunity.

Materials and methods.C57BL/6 female mice were used for immunization with purified human recombinant protein PRAME. Human PRAME gene coding sequence was cloned in mammalian expressing vector pCEP4 and resulting plasmid was introduced in mouse melanoma B16F10 cells by transfection followed by RQ-PCR, Western blot and flow-cytometry analysis. Then stably PRAME-transfected melanoma cells were injected in mice.

Results.The mouse melanoma B16F10 cells stably expressing human PRAME protein were obtained. We demonstrate the 10-fold decreased tumor volume in mice with melanoma B16F10 expressing human PRAME after preventive immunization series with recombinant PRAME protein. The tumor volume reducing was correlated with high titer (6.14 × 10 5) of anti-PRAME antibodies in mice sera.

Conclusion.These data indicate that recombinant protein PRAME is immunogenic and may be a potent antigen for immunotherapuetics studies.

About the Authors

Yu. P. Finashutina
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

24 Kashirskoe Shosse, Moscow 115478



N. A. Lyzhko
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

24 Kashirskoe Shosse, Moscow 115478



N. N. Kasatkina
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

24 Kashirskoe Shosse, Moscow 115478



L. A. Kesaeva
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

24 Kashirskoe Shosse, Moscow 115478



V. V. Tikhonova
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

24 Kashirskoe Shosse, Moscow 115478



V. A. Misyurin
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

24 Kashirskoe Shosse, Moscow 115478



M. A. Baryshnikova
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

24 Kashirskoe Shosse, Moscow 115478



A. V. Misyurin
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; GeneTechnology LLC
Russian Federation

24 Kashirskoe Shosse, Moscow 115478, 

104 Profsoyuznaya St., Moscow 117485



References

1. Baryshnikov A.Yu., Demidov L.V., Kadagidze Z.G. et al. Current problems of anti-cancer biotherapy. Vestnik Moskovskogo onkologicheskogo obschestva = Bulletin of the Moscow Cancer Society 2008;1:6–10 (In Russ.)

2. Cheever M.A., Allison J.P., Ferris A.S. et al. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 2009;15(17):5323–37. DOI: 10.1158/1078-0432.CCR-09-0737. PMID: 19723653.

3. Ikeda H., Lethé B., Lehmann F. et al. Characterization of an antigen that is recognized on a melanoma showing partial HLA loss by CTL expressing an NK inhibitory receptor. Immunity 1997;6:199–208. DOI: 10.1016/S1074- 7613(00)80426-4. PMID: 9047241

4. Abramenko I.V., Belous N.I., Kryachok I.A. et al. Expression of PRAME gene in multiple myeloma. Terapevticheskii arkhiv = Therapeutic Archive 2004;74(7):77–81 (In Russ.)

5. Misyurin V.A., Misyurin A.V., Lukina A.E. et al. Cancer-testis Gene Expression Profile in Human Melanoma Cell Lines. Biologicheskie membrany = Biological membranes 2014;31(2):104–9 (In Russ.)

6. Quintarelli C., Dotti G., Hasan S.T. et al. High-avidity cytotoxic T lymphocytes specific for a new PRAME-derived peptide can target leukemic and leukemic-precursor cells. Blood 2011;117:3353–62. DOI: 10.1182/blood-2010-08-300376. PMID: 21278353.

7. Rezvani K., Yong A.S., Tawab A. et al. Ex vivo characterization of polyclonal memory CD8+ T-cell responses to PRAME-specific peptides in patients with acute lymphoblastic leukemia andacute and chronic myeloid leukemia. Blood 2009;113:2245–55. DOI: 10.1182/blood-2008-03-144071. PMID: 18988867.

8. Luetkens T., Schafhausen P., Uhlich F. et al. Expression, epigenetic regulation, and humoral immunogenicity of cancertestis antigens in chronic myeloid leukemia. Leuk Res 2010;34(12):1647–55. DOI: 10.1016/j.leukres.2010.03.039. PMID: 20409582.

9. Maraskovsky E., Sjölander S., Drane D. et al. NY-ESO-1 protein formulated in ISCOMATRIX adjuvant is a potent anticancer vaccine inducing both humoral and CD8+ t-cell-mediated immunity and protection against NY-ESO-1+ tumors. Clin Cancer Res 2004;10(8):2879–90. DOI: 10.1158/1078-0432.CCR-03-0245. PMID: 15102697.

10. Hance K., Zeytin H., Greiner J. Mouse models expressing human carcinoembryonic antigen (CEA) as a transgene: evaluation of CEA-based cancer vaccines. Mutat Res 2005; 576(1–2):132–54. DOI: 10.1016/j.mrfmmm.2004.10.014. PMID: 15888344.

11. Chiriva-Internati M., Yu Y., Mirandola L. et al. Cancer testis antigen vaccination affords long-term protection in a murine model of ovarian cancer. PLoS One 2010;5(5):e10471. DOI: 10.1371/journal.pone. 0010471. PMID: 20485677.

12. Finashutina Yu.P., Misyurin A.V., Akhlynina T.V. et al. Production of recombinant PRAME cancer testis antigen and its specifi c monoclonal antibodies. Rossiysky Bioterapevtichesky Zhurnal = Russian Journal of Biotherapy 2015;14(3):29–36. (In Russ)

13. Laemmli U. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970;224: 680–5. DOI: 10.1038/227680a0. PMID: 5432063.

14. Treshchalina E.M., Zhukova O.S., Gerasimova G.K. et al. Guidance on pre-clinical study of antitumor activity of drugs. In: Guide to conduct preclinical studies of drugs. Part 1. Eds. A.N. Mironov, N.D. Bunyatyan et al. Мoscow: Grif i K, 2012:642–57 (In Russ.)

15. Eisenthal A., Lafreniere R., Letor A. et al. Effect of anti-B,16 melanoma monoclonal antibody on established murine B16 melanoma liver metastases. Cancer Res 1987;47:7140–5. PMID: 3494504.

16. Seliger B., Wollscheid U., Momburg F. et al. Characterization of the major histocompatibility complex class I deficiencies in B16 melanoma cells. Cancer Res 2001;61(3):1095–9. PMID: 11221838.

17. Gérard C., Baudson N., Ory T. et al. A comprehensive preclinical model evaluating the recombinant PRAME antigen combined with the AS15 immunostimulant to fight against PRAME-expressing tumors. J Immunother 2015;38(8):311–20. DOI: 10.1097/CJI.0000000000000095. PMID: 26325375.

18. Pujol J., De Pas T., Rittmeyer A. et al. Safety and Immunogenicity of the PRAME Cancer Immunotherapeutic in Patients with Resected Non-Small Cell Lung Cancer: A Phase I Dose Escalation Study. J Thorac Oncol 2016;11(12):2208–17. DOI: 10.1016/j.jtho.2016.08.120. PMID: 27544054.

19. Gutzmer R., Rivoltini L., Levchenko E. et al. Safety and immunogenicity of the PRAME cancer immunotherapeutic in metastatic melanoma: results of a phase I dose escalation study. ESMO Open 2016;1(4):e000068. DOI:10.1136/esmoopen-2016-000068. PMID: 27843625.

20. Weber J.S., Vogelzang N.J., Ernstoff M.S. et al. A phase 1 study of a vaccine targeting preferentially expressed antigen in melanoma and prostate-specific membrane antigen in patients with advanced solid tumors. J Immunother 2011;34(7):556–67. DOI: 10.1097/CJI.0b013e3182280db1. PMID: 21760528.


Review

For citations:


Finashutina Yu.P., Lyzhko N.A., Kasatkina N.N., Kesaeva L.A., Tikhonova V.V., Misyurin V.A., Baryshnikova M.A., Misyurin A.V. Recombinant human PRAME immunization reducesPRAME-expressing tumor growth in mice. Russian Journal of Biotherapy. 2018;17(3):36-42. (In Russ.) https://doi.org/10.17650/1726-9784-2018-17-3-36-42

Views: 468


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1726-9784 (Print)
ISSN 1726-9792 (Online)