Preview

Российский биотерапевтический журнал

Расширенный поиск

Современные представления о происхождении, особенностях морфологии, прогностической и предиктивной значимости опухолевых сосудов

https://doi.org/10.17650/1726-9784-2019-18-1-6-15

Полный текст:

Аннотация

В обзоре изложены современные представления о происхождении опухолевых сосудов и особенностях их морфологии. Описаны различные подходы к классификации типов сосудов, оценке их клинической и прогностической значимости. Отражены основные проблемы, связанные с использованием блокаторов ангиогенеза при лечении злокачественных новообразований, и возможные пути их решения.

Об авторах

М. А. Сеньчукова
ФГБОУ ВО «Оренбургский государственный медицинский университет» Минздрава России; ГБУЗ «Оренбургский областной клинический онкологический диспансер»;
Россия

460000 Оренбург, ул. Советская, 6;
460021 Оренбург, пр-т Гагарина, 11



Е. В. Макарова
ФГБОУ ВО «Оренбургский государственный медицинский университет» Минздрава России; ГБУЗ «Оренбургский областной клинический онкологический диспансер»;
Россия
460000 Оренбург, ул. Советская, 6;
460021 Оренбург, пр-т Гагарина, 11


Е. А. Калинин
ГБУЗ «Оренбургский областной клинический онкологический диспансер»;
Россия
460021 Оренбург, пр-т Гагарина, 11


В. В. Ткачев
ГБУЗ «Оренбургский областной клинический онкологический диспансер»;
Россия
460021 Оренбург, пр-т Гагарина, 11


Список литературы

1. Folkman J. Anti-angiogenesis: new concept for therapy of solid tumors. Ann Surg 1972;175(3):409–16. PMID: 5077799.

2. Han Z., Chen Z., Zheng R. et al. Clinicopathological significance of CD133 and CD44 expression in infiltrating ductal carcinoma and their relationship to angiogenesis. World J Surg Oncol 2015;13:56. DOI: 10.1186/s12957-015-0486-9. PMID: 25889325.

3. Kraby M.R., Opdahl S., Akslen L.A., Bofin A.M. Quantifying tumour vascularity in non-luminal breast cancers. J Clin Pathol 2017;70(9):766–74. DOI: 10.1136/jclinpath-2016-204208. PMID: 28249942.

4. Luo L.M., Xia H., Shi R. et al. The association between aquaporin-1 expression, microvessel density and the clinicopathological features of hepatocellular carcinoma. Oncol Lett 2017;14(6):7077–84. DOI: 10.3892/ol.2017.7106. PMID: 29344137.

5. Франциянц Е.М., Комарова Е.Ф., Позднякова В.В. и др. Система факторов неоангиогенеза и пролиферации в ткани меланомы кожи, ее перифокальной зоны и по линии резекции. Фундаментальные исследования 2013;7(2):423–7. [Frantsiyants E.M., Komarova E.F., Pozdnyakova V.V. et al. The system of factors of neoangiogenesis and proliferation in the tissue of the skin melanoma, its perifocal area and resection line. Fundamentalnye issledovaniya = Fundamental Research 2013;7(2):423–7. (In Russ.)].

6. Yehya A.H.S., Asif M., Petersen S.H. et al. Angiogenesis: managing the culprits behind tumorigenesis and metastasis. Medicina (Kaunas) 2018;54(1):8. DOI: 10.3390/medicina54010008. PMID: 30344239.

7. Li H., Huang N., Zhu W. et al. Modulation the crosstalk between tumor-associated macrophages and nonsmall cell lung cancer to inhibit tumor migration and invasion by ginsenoside Rh2. BMC Cancer 2018;18(1):579. DOI: 10.1186/s12885-018-4299-4. PMID: 29783929.

8. Osinsky S., Bubnovskaya L., Ganusevich I. et al. Hypoxia, tumors-associated macrophages, microvessel density, VEGF and matrix metalloproteinases in human gastric cancer: interaction and impact on survival. Clin Transl Oncol 2011;13(2):133–8. DOI: 10.1007/s12094-011-0630-0. PMID: 21324802.

9. Кушлинский Н.Е., Герштейн Е.С. Исследование матриксных металлопротеиназ и их тканевых ингибиторов в опухолях и периферической крови онкологических больных. Клинические перспективы. Лабораторная служба 2013;(1):25–38. [Kushlinsky N.E., Gershteyn E.S. Study of matrix metalloproteinases and their tissue inhibitors in tumors and peripheral blood of cancer patients. Clinical perspectives. Laboratornaya sluzhba = Laboratory Service 2013;(1):25–38. (In Russ.)].

10. Wen Y.L., Li L. Correlation between matrix metalloproteinase-9 and vascular endothelial growth factor expression in lung adenocarcinoma. Genet Mol Res 2015;14(4):19342–8. DOI: 10.4238/2015.December.29.44. PMID: 26782587.

11. Вартанян А.А. Основные закономерности ангиогенеза при онкогематологических заболеваниях. Клиническая онкогематология 2013;4(6):343–53. [Vartanyan A.A. Basic mechanisms of angiogenesis in hematological malignancies. Klinicheskaya onkogematologiya = Clinical Oncohematology 2013;4(6):343–53. (In Russ.)].

12. Bodnar R.J. Anti-angiogenic drugs: involvement in cutaneous side effects and wound-healing complication. Adv Wound Care (New Rochelle) 2014;3(10):635–46. DOI: 10.1089/wound.2013.0496. PMID: 25302138.

13. Piperdi B., Merla A., Perez-Soler R. Targeting angiogenesis in squamous non-small cell lung cancer. Drugs 2014;74(4):403–13. DOI: 10.1007/s40265-014-0182-z. PMID: 24578213.

14. Zuazo-Gaztelu I., Casanovas O. Unraveling the role of angiogenesis in cancer ecosystems. Front Oncol 2018;8:248. DOI: 10.3389/fonc.2018.00248. PMID: 30013950.

15. Hosseini F., Naghavi N. Modelling tumor-induced angiogenesis: combination of stochastic sprout spacing and sprout progression. J Biomed Phys Eng 2017;7(3):233–56. PMID: 29082215.

16. Palm M.M., Dallinga M.G., van Dijk E. et al. Computational screening of tip and stalk cell behavior proposes a role for Apelin signaling in sprout progression. PLoS One 2016;11(11):e0159478. DOI: 10.1371/journal.pone.0159478. PMID: 27828952.

17. Shamloo A., Mohammadaliha N., Heilshorn S.C., Bauer A.L. A comparative study of collagen matrix density effect on endothelial sprout formation using experimental and computational approaches. Ann Biomed Eng 2016;44(4):929–41. DOI: 10.1007/s10439-015-1416-2. PMID: 26271521.

18. Feng X., Tonnesen M.G., Mousa S.A., Clark R.A. Fibrin and collagen differentially but synergistically regulate sprout angiogenesis of human dermal microvascular endothelial cells in 3-dimensional matrix. Int J Cell Biol 2013;2013:231279. DOI: 10.1155/2013/231279. PMID: 23737792.

19. Dvorak H.F. Tumor stroma, tumor blood vessels, and antiangiogenesis therapy. Cancer J 2015;21(4):237–43. DOI: 10.1097/PPO.0000000000000124. PMID: 26222073.

20. Hompland T., Ellingsen C., Galappathi K., Rofstad E.K. DW-MRI in assessment of the hypoxic fraction, interstitial fluid pressure, and metastatic propensity of melanoma xenografts. BMC Cancer 2014;14:92. DOI: 10.1186/1471-2407-14-92. PMID: 24528854.

21. Sitohy B., Chang S., Sciuto T.E. et al. Early actions of anti-vascular endothelial growth factor/vascular endothelial growth factor receptor drugs on angiogenic blood vessels. Am J Pathol 2017;187(10):2337–47. DOI: 10.1016/j.ajpath.2017.06.010. PMID: 28736316.

22. Frentzas S., Simoneau E., Bridgeman V.L. et al. Vessel co-option mediates resistance to anti-angiogenic therapy in liver metastases. Nat Med 2016;22(11):1294–302. DOI: 10.1038/ nm.4197. PMID: 27748747.

23. Bridgeman V.L., Vermeulen P.B., Foo S. et al. Vessel co-option is common in human lung metastases and mediates resistance to anti-angiogenic therapy in preclinical lung metastasis models. J Pathol 2017;241(3):362–74. DOI: 10.1002/path.4845. PMID: 27859259.

24. Cai Y., Zhang J., Wu J., Li Z.Y. Oxygen transport in a three-dimensional microvascular network incorporated with early tumour growth and preexisting vessel cooption: numerical simulation study. Biomed Res Int 2015;2015:476964. DOI: 10.1155/2015/476964. PMID: 25695084.

25. Coelho A.L., Gomes M.P., Catarino R.J. et al. Angiogenesis in NSCLC: is vessel co-option the trunk that sustains the branches? Oncotarget 2017;8(24):39795–804. DOI: 10.18632/oncotarget.7794. PMID: 26950275.

26. Kuczynski E.A., Kerbel R.S. Implications of vessel co-option in sorafenib-resistant hepatocellular carcinoma. Chin J Cancer 2016;35(1):97. DOI: 10.1186/s40880-016-0162-7. PMID: 27887628.

27. Qian C.N. Hijacking the vasculature in ccRCC – co-option, remodelling and angiogenesis. Nat Rev Urol 2013;10(5):300–4. DOI: 10.1038/ nrurol.2013.26. PMID: 23459032.

28. Maniotis A.J., Folberg R., Hess A. et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 1999;155(3):739–52. DOI: 10.1016/S0002-9440(10)65173-5. PMID: 10487832.

29. Vartanian A.A. Signaling pathways in tumor vasculogenic mimicry. Biochemistry (Mosc) 2012;77(9):1044–55. DOI: 10.1134/S000629791209012X. PMID: 23157265.

30. Ge H., Luo H. Overview of advances in vasculogenic mimicry – a potential target for tumor therapy. Cancer Manag Res 2018;10:2429–37. DOI: 10.2147/CMAR.S164675. PMID: 30122992.

31. Angara K., Rashid M.H., Shankar A. et al. Vascular mimicry in glioblastoma following anti-angiogenic and anti-20HETE therapies. Histol Histopathol 2017;32(9):917–28. DOI: 10.14670/HH-11-856. PMID: 27990624.

32. Vartanian A., Stepanova E., Grigorieva I. et al. Melanoma vasculogenic mimicry capillary-like structure formation depends on integrin and calcium signaling. Microcirculation 2011;18(5):390–9. DOI: 10.1111/j.1549-8719.2011.00102.x. PMID: 21438962.

33. Вартанян А.А. Альтернативное кровоснабжение в костном мозге при онкогематологических заболеваниях. Клиническая онкогематология 2014;7(4):491–500. [Vartanyan A.A. Supplemental blood circulation system in hematologic malignancies. Klinicheskaya onkogematologiya = Clinical Oncohematology 2014;7(4):491–500. (In Russ.)].

34. Soda Y., Myskiw C., Rommel A., Verma I.M. Mechanisms of neovascularization and resistance to anti-angiogenic therapies in glioblastoma multiforme. J Mol Med(Berl) 2013;91(4):439–48. DOI: 10.1007/s00109-013-1019-z. PMID: 23512266.

35. Pàez-Ribes M., Allen E., Hudock J. et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 2009;15(3):220–31. DOI: 10.1016/j.ccr.2009.01.027. PMID: 19249680.

36. Vartanian A.A., Burova O.S., Stepanova E.V. et al. Melanoma vasculogenic mimicry is strongly related to reactive oxygen species level. Melanoma Res 2007;17(6):370–9. DOI: 10.1097/CMR.0b013e3282f1d2ec. PMID: 17992120.

37. Burri P.H., Hlushchuk R., Djonov V. Intussusceptive angiogenesis: its emergence, its characteristics, and its significance. Dev Dyn 2004;231(3):474–88. DOI: 10.1002/dvdy.20184. PMID: 15376313.

38. Hlushchuk R., Riesterer O., Baum O. et al. Tumor recovery by angiogenic switch from sprouting to intussusceptive angiogenesis after treatment with PTK787/ZK222584 or ionizing radiation. Am J Pathol 2008;173(4):1173–85. DOI: 10.2353/ajpath.2008.071131. PMID: 18787105.

39. Asahara T., Murohara T., Sullivan A. et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997;275(5302):964–7. PMID: 9020076.

40. Moschetta M., Mishima Y., Sahin I. et al. Role of endothelial progenitor cells in cancer progression. Biochim Biophys Acta 2014;1846(1):26–39. DOI: 10.1016/j.bbcan.2014.03.005. PMID: 24709008.

41. Paprocka M., Kieda C., Kantor A. et al. Increased endothelial progenitor cell number in early stage of endometrial cancer. Int J Gynecol Cancer 2017;27(5):947–52. DOI: 10.1097/ IGC.0000000000000961. PMID: 28498245.

42. Yu M., Men H.T., Niu Z.M. et al. Metaanalysis of circulating endothelial cells and circulating endothelial progenitor cells as prognostic factors in lung cancer. Asian Pac J Cancer Prev 2015;16(14):6123–8. PMID: 26320506.

43. Ziebart T., Blatt S., Günther C. et al. Significance of endothelial progenitor cells (EPC) for tumorigenesis of head and neck squamous cell carcinoma (HNSCC): possible marker of tumor progression and neovascularization? Clin Oral Investig 2016;20(8):2293–300. DOI: 10.1007/s00784-016-1785-4. PMID: 26993659.

44. Tanaka S., Ueno T., Ishiguro H. et al. The lack of increases in circulating endothelial progenitor cell as a negative predictor for pathological response to neoadjuvant chemotherapy in breast cancer patients. NPJ Precis Oncol 2017;1(1):6. DOI: 10.1038/s41698-017-0006-1. PMID: 29872695.

45. Sudo K., Sato K., Sakamoto S. et al. Association between endothelial progenitor cells and treatment response in non-squamous non-small cell lung cancer treated with bevacizumab. Anticancer Res 2017;37(10):5565–71. DOI: 10.21873/anticanres.11989. PMID: 28982871.

46. Naito H., Wakabayashi T., Kidoya H. et al. Endothelial side population cells contribute to tumor angiogenesis and antiangiogenic drug resistance. Cancer Res 2016;76(11):3200–10. DOI: 10.1158/0008-5472.CAN-15-2998. PMID: 27197162.

47. Morita R., Sato K., Nakano M. et al. Endothelial progenitor cells are associated with response to chemotherapy in human non-small-cell lung cancer. J Cancer Res Clin Oncol 2011;137(12):1849–57. DOI: 10.1007/s00432-011-1043-8. PMID: 21927909.

48. Fabian K.L., Storkus W.J. Immunotherapeutic targeting of tumorassociated blood vessels. Adv Exp Med Biol 2017;1036:191–211. DOI: 10.1007/978-3-319-67577-0_13. PMID: 29275473.

49. Fisher D.T., Muhitch J.B., Kim M. et al. Intraoperative intravital microscopy permits the study of human tumour vessels. Nat Commun 2016;7:10684. DOI: 10.1038/ncomms10684. PMID: 26883450.

50. Birau A., Ceausu R.A., Cimpean A.M. et al. Assessement of angiogenesis reveals blood vessel heterogeneity in lung carcinoma. Oncol Lett 2012;4(6):1183–6. DOI: 10.3892/ol.2012.893. PMID: 23205116.

51. Klein D. The tumor vascular endothelium as decision maker in cancer therapy. Front Oncol 2018;8:367. DOI: 10.3389/fonc.2018.00367. PMID: 30250827.

52. Hashizume H., Baluk P., Morikawa S. et al. Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 2000;156(4):1363–80. DOI: 10.1016/S0002-9440(10)65006-7. PMID: 10751361.

53. Snuderl M., Zhang G., Wu P. et al. Endothelium-independent primitive myxoid vascularization creates invertebrate-like channels to maintain blood supply in optic gliomas. Am J Pathol 2017;187(8):1867–78. DOI: 10.1016/j.ajpath.2017.04.004. PMID: 28606795.

54. Stamatelos S.K., Kim E., Pathak A.P., Popel A.S. A bioimage informatics based reconstruction of breast tumor microvasculature with computational blood flow predictions. Microvasc Res 2014;91:8–21. DOI: 10.1016/j.mvr.2013.12.003. PMID: 24342178.

55. Nagy J.A., Dvorak H.F. Heterogeneity of the tumor vasculature: the need for new tumor blood vessel type-specific targets. Clin Exp Metastasis 2012;29(7):657–62. DOI: 10.1007/ s10585-012-9500-6. PMID: 22692562.

56. Rofstad E.K., Galappathi K., Mathiesen B.S. Tumor interstitial fluid pressure – a link between tumor hypoxia, microvascular density, and lymph node metastasis. Neoplasia 2014;16(7):586–94. DOI: 10.1016/j.neo.2014.07.003. PMID: 25117980.

57. Al-Sukhni E., Attwood K., Gabriel E.M. et al. Lymphovascular and perineural invasion are associated with poor prognostic features and outcomes in colorectal cancer: a retrospective cohort study. Int J Surg 2017;37:42–9. DOI: 10.1016/j.ijsu.2016.08.528. PMID: 27600906.

58. Wang A., Tan Y., Geng X. et al. Lymphovascular invasion as a poor prognostic indicator in thoracic esophageal carcinoma: a systematic review and meta-analysis. Dis Esophagus 2019;32(2). DOI: 10.1093/dote/doy083. PMID: 30169614.

59. Maishi N., Ohba Y., Akiyama K. et al. Tumour endothelial cells in high metastatic tumours promote metastasis via epigenetic dysregulation of biglycan. Sci Rep 2016;6:28039. DOI: 10.1038/srep28039. PMID: 27295191.

60. Bujor I.S., Cioca A., Ceaușu R.A. et al. Evaluation of vascular proliferation in molecular subtypes of breast cancer. In Vivo 2018;32(1):79–83. DOI: 10.21873/invivo.11207. PMID: 29275302.

61. Kelly-Goss M.R., Sweat R.S., Stapor P.C. et al. Targeting pericytes for angiogenic therapies. Microcirculation 2014;21(4):345–57. DOI: 10.1111/micc.12107. PMID: 24267154.

62. Kim J., de Sampaio P.C., Lundy D.M. et al. Heterogeneous perivascular cell coverage affects breast cancer metastasis and response to chemotherapy. JCI Insight 2016;1(21):e90733. DOI: 10.1172/jci.insight.90733. PMID: 28018977.

63. Baluk P., Morikawa S., Haskell A. et al. Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. Am J Pathol 2003;163(5):1801–15. DOI: 10.1016/S0002-9440(10)63540-7. PMID: 14578181.

64. Sun C., Li J., Wang B. et al. Tumor angiogenesis and bone metastasis – correlation in invasive breast carcinoma. J Immunol Methods 2018;452:46–52. DOI: 10.1016/j.jim.2017.10.006. PMID: 29066178.

65. Miyata Y., Mitsunari K., Asai A. et al. Pathological significance and prognostic role of microvessel density, evaluated using CD31, CD34, and CD105 in prostate cancer patients after radical prostatectomy with neoadjuvant therapy. Prostate 2015;75(1):84–91. DOI: 10.1002/ pros.22894. PMID: 25307287.

66. Hakala T., Sand J., KellokumpuLehtinen P.L. et al. Recurrent thyroid cancers have more peritumoural lymphatic vasculature than nonrecurrent thyroid cancers. Eur J Clin Invest 2014;44(9):825–32. DOI: 10.1111/ eci.12301. PMID: 25047155.

67. Liu H., Jiang Y., Dai Q. et al. Peripheral enhancement of breast cancers on contrast-enhanced ultrasound: correlation with microvessel density and vascular endothelial growth factor expression. Ultrasound Med Biol 2014;40(2):293–9. DOI: 10.1016/j.ultrasmedbio.2013.10.004. PMID: 24315392.

68. Rudno-Rudzińska J., Donizy P., Frejlich E. et al. Lymphangiogenesis in early and advanced gastric cancer: is there any difference? J Gastroenterol Hepatol 2014;29 Suppl 4:107–11. DOI: 10.1111/jgh.12733. PMID: 25521742.

69. Minajeva A., Kase M., Saretok M. et al. Impact of blood vessel quantity and vascular expression of CD133 and ICAM-1 on survival of glioblastoma patients. Neurosci J 2017;2017:5629563. DOI: 10.1155/2017/5629563. PMID: 29250531.

70. Sitohy B., Nagy J.A., Jaminet S.C., Dvorak H.F. Tumor-surrogate blood vessel subtypes exhibit differential susceptibility to anti-VEGF therapy. Cancer Res 2011;71(22):7021–8. DOI: 10.1158/0008-5472.CAN-11-1693. PMID: 21937680.

71. Gee M.S., Procopio W.N., Makonnen S. et al. Tumor vessel development and maturation impose limits on the effectiveness of anti-vascular therapy. Аm J Pathol 2003;162(1):183–93. DOI: 10.1016/S0002-9440(10)63809-6. PMID: 12507901.

72. Cascone T., Herynk M.H., Xu L. et al. Upregulated stromal EGFR and vascular remodeling in mouse xenograft models of angiogenesis inhibitor-resistant human lung adenocarcinoma. J Clin Invest 2011;121(4):1313–28. DOI: 10.1172/JCI42405. PMID: 21436589.

73. Helfrich I., Scheffrahn I., Bartling S. et al. Resistance to antiangiogenic therapy is directed by vascular phenotype, vessel stabilization, and maturation in malignant melanoma. J Exp Med 2010;207(3):491–503. DOI: 10.1084/jem.20091846. PMID: 20194633.

74. Chen M., Lei X., Shi C. et al. Pericyte-targeting prodrug overcomes tumor resistance to vascular disrupting agents. J Clin Invest 2017;127(10):3689–701. DOI: 10.1172/JCI94258. PMID: 28846068.

75. Nagy J.A., Feng D., Vasile E. et al. Permeability properties of tumor surrogate blood vessels induced by VEGF-A. Lab Invest 2006;86(8):767–80. DOI: 10.1038/labinvest.3700436. PMID: 16732297.

76. Senchukova M., Kiselevsky M.V. The “cavitary” type of angiogenesis by gastric cancer. Morphological characteristics and prognostic value. J Cancer 2014;5(5):311–9. DOI: 10.7150/jca.8716. PMID: 24723973.

77. Senchukova M.A., Nikitenko N.V., Tomchuk O.N. et al. Different types of tumor vessels in breast cancer: morphology and clinical value. Springerplus 2015;4:512. DOI: 10.1186/s40064-015-1293-z. PMID: 26405632.

78. Nantajit D., Lin D., Li J.J. The network of epithelial-mesenchymal transition: potential new targets for tumor resistance. J Cancer Res Clin Oncol 2015;141(10):1697–713. DOI: 10.1007/ s00432-014-1840-y. PMID: 25270087.

79. Мнихович М.В., Вернигородский С.В., Буньков К.В. Эпителиально-мезенхимальный переход. Трансдифференциация. Репрограммирование и метаплазия. Современный взгляд на проблему. Морфологические ведомости 2017;(3):4–21. [Mnikhovich M.V., Vernigorodsky S.V., Bun’kov K.V Epithelial-mesenchymal transition. Transdifferentiation. Reprogramming and metaplasia. Modern view of the problem. Morfologicheskie vedomosti = Morphological Newsletter 2017;(3):4– 21. (In Russ.)].

80. Fantozzi A., Gruber D.C., Pisarsky L. et al. VEGF-mediated angiogenesis links EMT-induced cancer stemness to tumor initiation. Cancer Res 2014;74(5):1566– 75. DOI: 10.1158/0008-5472.CAN-131641. PMID: 24413534.

81. Li C., Li Q., Cai Y. et al. Overexpression of angiopoietin 2 promotes the formation of oral squamous cell carcinoma by increasing epithelial-mesenchymal transition-induced angiogenesis. Cancer Gene Ther 2016;23(9):295–302. DOI: 10.1038/cgt.2016.30. PMID: 27492854.

82. Ribatti D. Epithelial-mesenchymal transition in morphogenesis, cancer progression and angiogenesis. Exp Cell Res 2017;353(1):1–5. DOI: 10.1016/j.yexcr.2017.02.041. PMID: 28257786.

83. Shenoy A.K., Jin Y., Luo H. et al. Epithelial-to-mesenchymal transition confers pericyte properties on cancer cells. J Clin Invest 2016;126(11):4174–86. DOI: 10.1172/JCI86623. PMID: 27721239.

84. Liu Q., Qiao L., Liang N. et al. The relationship between vasculogenic mimicry and epithelial-mesenchymal transitions. J Cell Mol Med 2016;20(9):1761–9. DOI: 10.1111/ jcmm.12851. PMID: 27027258.

85. Bruhn M.A., Townsend A.R., Khoon Lee C. et al. Proangiogenic tumor proteins as potential predictive or prognostic biomarkers for bevacizumab therapy in metastatic colorectal cancer. Int J Cancer 2014;135(3):731–41. DOI: 10.1002/ijc.28698. PMID: 24374727.

86. Ueda S., Saeki T., Osaki A. et al. Bevacizumab induces acute hypoxia and cancer progression in patients with refractory breast cancer: multimodal functional imaging and multiplex cytokine analysis. Clin Cancer Res 2017;23(19):5769–78. DOI: 10.1158/1078-0432.CCR-17-0874. PMID: 28679773.

87. von Baumgarten L., Brucker D., Tirniceru A. et al. Bevacizumab has differential and dose-dependent effects on glioma blood vessels and tumor cells. Clin Cancer Res 2011;17(19):6192–205. DOI: 10.1158/1078-0432.CCR-10-1868. PMID: 21788357.

88. Leite de Oliveira R., Deschoemaeker S., Henze A.T. et al. Gene-targeting of Phd2 improves tumor response to chemotherapy and prevents side-toxicity. Cancer Cell 2012;22(2):263–77. DOI: 10.1016/j.ccr.2012.06.028. PMID: 22897855.

89. Miyazaki S., Kikuchi H., Iino I. et al. Anti-VEGF antibody therapy induces tumor hypoxia and stanniocalcin 2 expression and potentiates growth of human colon cancer xenografts. Int J Cancer 2014;135(2):295–307. DOI: 10.1002/ijc.28686. PMID: 24375080.

90. Smith N.R., Baker D., Farren M. et al. Tumor stromal architecture can define the intrinsic tumor response to VEGF-targeted therapy. Clin Cancer Res 2013;19(24):6943–56. DOI: 10.1158/1078-0432.CCR-13-1637. PMID: 24030704.

91. Смирнов И.В., Грязева И.В., Самойлович М.П., Климович В.Е. Эндоглин (СD105) – мишень для визуализации и антиангиогенной терапии злокачественных опухолей. Вопросы онкологии 2015;61(6):898– 907. [Smirnov I.V., Gryazeva I.V., Samoylovich M.P., Klimovich V.E. Endoglin (CD105) – target for imaging and antiangiogenic therapy of malignant tumors. Voprosy onkologii = Problems in Oncology 2015;61(6):898–907. (In Russ.)].

92. Штабинская Т.Т., Боднар М., Ляликов С.А. и др. Значение уровня позитивности CD105 в раке толстой кишки для прогноза эффективности химиотерапии. Евразийский онкологический журнал 2015;7(4):35–42. [Shtabinskaya T.T., Bodnar M., Lyalikov S.A. et al. The level of CD105 positivity in colon cancer to predict chemotherapy effectiveness. Evraziysky onkologichesky zhurnal = Eurasian Journal of Oncology 2015;7(4):35–42. (In Russ.)].

93. Viallard C., Larrivée B. Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis 2017;20(4):409–26. DOI: 10.1007/s10456-017-9562-9. PMID: 28660302.

94. Chen J.X., Stinnett A. Ang-1 gene therapy inhibits hypoxia-inducible factor-1alpha (HIF-1alpha)-prolyl-4hydroxylase-2, stabilizes HIF-1alpha expression, and normalizes immature vasculature in db/db mice. Diabetes 2008;57(12):3335–43. DOI: 10.2337/ db08-0503. PMID: 18835934.

95. Mazzone M., Dettori D., de Oliveira R.L. et al. Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 2009;136(5):839–51. DOI: 10.1016/j.cell.2009.01.020. PMID: 19217150.

96. Kuchnio A., Moens S., Bruning U. et al. The cancer cell oxygen sensor PHD2 promotes metastasis via activation of cancer-associated fibroblasts. Cell Rep 2015;12(6):992–1005. DOI: 10.1016/j.celrep.2015.07.010. PMID: 26235614.

97. Gkretsi V., Zacharia L.C., Stylianopoulos T. Targeting inflammation to improve tumor drug delivery. Trends Cancer 2017;3(9):621–30. DOI: 10.1016/j. trecan.2017.07.006. PMID: 28867166.

98. Li W., Li X., Liu S. et al. Gold nanoparticles attenuate metastasis by tumor vasculature normalization and epithelial-mesenchymal transition inhibition. Int J Nanomedicine 2017;12:3509–20. DOI: 10.2147/IJN. S128802. PMID: 28496326.

99. Wang B., Ding Y., Zhao X. et al. Delivery of small interfering RNA against Nogo-B receptor via tumor-acidity responsive nanoparticles for tumor vessel normalization and metastasis suppression. Biomaterials 2018;175:110–22. DOI: 10.1016/j.biomaterials.2018.05.034. PMID: 29803999.


Для цитирования:


Сеньчукова М.А., Макарова Е.В., Калинин Е.А., Ткачев В.В. Современные представления о происхождении, особенностях морфологии, прогностической и предиктивной значимости опухолевых сосудов. Российский биотерапевтический журнал. 2019;18(1):6-15. https://doi.org/10.17650/1726-9784-2019-18-1-6-15

For citation:


Senchukova M.A., Makarova E.V., Kalinin E.A., Tkachev V.V. Modern ideas about the origin, features of morphology, prognostic and predictive significance of tumor vessels. Russian Journal of Biotherapy. 2019;18(1):6-15. (In Russ.) https://doi.org/10.17650/1726-9784-2019-18-1-6-15

Просмотров: 85


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1726-9784 (Print)
ISSN 1726-9792 (Online)