Васкулогенная мимикрия при меланоме: молекулярные механизмы и клиническое значение
https://doi.org/10.17650/1726-9784-2019-18-1-16-24
Аннотация
Об авторах
Д. Л. РотинИзраиль
Израиль, 52621 Рамат-Ган, Дорога Шиба, 2;
К. С. Титов
Россия
111123 Москва, ш. Энтузиастов, 86
А. М. Казаков
Россия
115478 Москва, Каширское ш., 24
Список литературы
1. Jain R.K., Carmeliet P. SnapShot: Tumor angiogenesis. Cell 2012;149(6):1408–1408.е1. DOI: 10.1016/j.cell.2012.05.025. PMID: 22682256.
2. Hilen F., Griffioen A.W. Tumour vascularization: sprouting angiogenesis and beyond. Cancer Metastasis Rev 2007;26(3–4):489–502. DOI: 10.1007/s10555-007-9094-7. PMID: 17717633.
3. Seftor R.E., Hess A.R., Seftor E.A. et al. Tumor cell vasculogenic mimicry: from controversy to therapeutic promise. Am J Pathol 2012;181(4):1115–25. DOI: 10.1016/j.ajpath.2012.07.013. PMID: 22944600.
4. Kirschmann D.A., Seftor E.A., Hardy K.M. et al. Molecular pathways: vasculogenic mimicry in tumor cells: diagnostic and therapeutic implications. Clin Cancer Res 2012;18(10):2726–32. DOI: 10.1158/1078-0432.CCR-11-3237. PMID: 22474319.
5. Qiao L., Liang N., Zhang J. et al. Advanced research on vasculogenic mimicry in cancer. J Cell Mol Med 2015;19(2):315–26. DOI: 10.1111/jcmm.12496. PMID: 25598425.
6. Chung H.J., Mahalingam M. Angiogenesis, vasculogenic mimicry and vascular invasion in cutaneous malignant melanoma – implications for therapeutic strategies and targeted therapies. Expert Rev Anticancer Ther 2014;14(5):621–39. DOI: 10.1586/14737140.2014.883281. PMID: 24506089.
7. Maniotis A.J., Folberg R., Hess A. et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 1999;155(3):739–52. DOI: 10.1016/S0002-9440(10)65173-5. PMID: 10487832.
8. Folberg R., Hendrix M.J., Maniotis A.J. Vasculogenic mimicry and tumor angiogenesis. Am J Pathol 2000;156(2):361–81. DOI: 10.1016/S0002-9440(10)64739-6. PMID: 10666364.
9. Clarijs R., van Dijk M., Ruiter D.J., de Waal R.M. Functional and morphologic analysis of the fluid-conducting meshwork in xenografted cutaneous and primary uveal melanoma. Invest Ophthalmol Vis Sci 2015;46(9):3013–20. DOI: 10.1167/iovs.04-0876. PMID: 16123395.
10. Frenkel S., Barzel I., Levy J. et al. Demonstrating circulation in vasculogenic mimicry patterns of uveal melanoma by confocal indocyanine green angiography. Eye (Lond) 2008;22(7):948–52. DOI: 10.1038/sj.eye.6702783. PMID: 17363922.
11. van Beurden A., Schmitz R.F., van Dijk C.M., Baeten C.I. Periodic acid Schiff loops and blood lakes associated with metastasis in cutaneous melanoma. Melanoma Res 2012;22(6):424–9. DOI: 10.1097/CMR.0b013e328358b355. PMID: 23010821.
12. Chang Y.S., di Tomaso E., McDonald D.M. et al. Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. Proc Natl Acad Sci USA 2000;97(26):14608–13. DOI: 10.1073/pnas.97.26.14608. PMID: 11121063.
13. di Tomaso E., Capen D., Haskell A. et al. Mosaic tumor vessels: cellular basis and ultrastructure of focal regions lacking endothelial cell markers. Cancer Res 2005;65(13):5740–9. DOI: 10.1158/0008-5472.CAN-04-4552. PMID: 15994949.
14. Chen L., Zhang S., Li X. et al. A pilot study of vasculogenic mimicry immunohistochemical expression in intraocular melanoma model. Oncol Rep 2009;21(4):989–99. PMID: 19287998.
15. Maniotis A.J., Chen X., Garcia C. et al. Control of melanoma morphogenesis, endothelial survival, and perfusion by extracellular matrix. Lab Invest 2012;82(8):1031–43. PMID: 12177242.
16. Clarijs R., Otte-Holler I., Ruiter D.J., de Waal R.M. Presence of a fluidconducting meshwork in xenografted cutaneous and primary human uveal melanoma. Invest Ophthalmol Vis Sci 2002;43(4):912–8. PMID: 11923228.
17. Mueller A.J., Bartsch D.U., Folberg R. et al. Imaging the microvasculature of choroidal melanomas with confocal indocyanine green scanning laser ophthalmoscopy. Arch Ophthalmol 1998;116(1):31–9. PMID: 9445206.
18. Ruf W., Seftor E.A., Petrovan R.J. et al. Differential role of tissue factor pathway inhibitors 1 and 2 in melanoma vasculogenic mimicry. Cancer Res 2003;63(17):5381–9. PMID: 14500372.
19. Hess A.R., Seftor E.A., Gardner L.M. et al. Molecular regulation of tumor cell vasculogenic mimicry by tyrosine phosphorylation: role of epithelial cell kinase (Eck/EphA2). Cancer Res 2001;61(8):3250–5. PMID: 11309274.
20. Girouard S.D., Murphy G.F. Melanoma stem cells: not rare, but well done. Lab Invest 2011;91(5):647–64. DOI: 10.1038/labinvest.2011.50. PMID: 21445060.
21. Sajithlal G.B., McGuire T.F., Lu J. et al. Endothelial-like cells derived directly from human tumor xenografts. Int J Cancer 2010;127(10):2268–78. DOI: 10.1002/ijc.25251. PMID: 20162569.
22. Dunleavey J.M., Dudley A.C. Vascular mimicry: concepts and implications for anti-angiogenic therapy. Curr Angiogenes 2012;1(2):133–8. DOI: 10.2174/2211552811201020133. PMID: 24729954.
23. Seftor E.A., Meltzer P.S., Schatteman G.C. et al. Expression of multiple molecular phenotypes by aggressive melanoma tumor cells: role in vasculogenic mimicry. Crit Rev Oncol Hematol 2002;44(1):17–27. PMID: 12398997.
24. McAllister J.C., Zhan Q., Weishaupt C. et al. The embryonic morphogen, Nodal, is associated with channel-like structures in human malignant melanoma xenografts. J Cutan Pathol 2010;37(Suppl 1):19–25. DOI: 10.1111/j.1600-0560.2010.01503.x. PMID: 20482672.
25. Khalkhali-Ellis Z., Kirschmann D.A., Seftor E.A. et al. Divergence(s) in Nodal signaling between aggressive melanoma and embryonic stem cells. Int J Cancer 2015;136(5):E242–51. DOI: 10.1002/ijc.29198. PMID: 25204799.
26. Frank N.Y., Schatton T., Kim S. et al. VEGFR-1 expressed by malignant melanoma-initiating cells is required for tumor growth. Cancer Res 2011;71(4):1474–85. DOI: 10.1158/0008-5472.CAN-10-1660. PMID: 21212411.
27. Murphy G.F., Wilson B.J., Girouard S.D. et al. Stem cells and targeted approaches to melanoma cure. Mol Aspects Med 2014;39:33–49. DOI: 10.1016/j.mam.2013.10.003. PMID: 24145241.
28. Lai C.Y., Schwartz B.E., Hsu M.Y. CD133+ melanoma subpopulations contribute to perivascular niche morphogenesis and tumorigenicity through vasculogenic mimicry. Cancer Res 2012;72(19):5111–8. DOI: 10.1158/0008-5472.CAN-12-0624. PMID: 22865455.
29. Valyi-Nagy K., Kormos B., Ali M. et al. Stem cell marker CD271 is expressed by vasculogenic mimicry-forming uveal melanoma cells in three-dimensional cultures. Mol Vis 2012;18:588–92. PMID: 22419851.
30. Demou Z.N., Hendrix M.J. Microgenomics profile the endogenous angiogenic phenotype in subpopulations of aggressive melanoma. J Cell Biochem 2008;105(2):562–73. DOI: 10.1002/ jcb.21855. PMID: 18655191.
31. Bittner M., Meltzer P., Chen Y. et al. Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 2000;406(6795): 536–40. DOI: 10.1038/35020115. PMID: 10952317.
32. Hess A.R., Margaryan N.V., Seftor E.A., Hendrix M.J. Deciphering the signaling events that promote melanoma tumor cell vasculogenic mimicry and their link to embryonic vasculogenesis: role of the Eph receptors. Dev Dyn 2007;236(12):3283–96. DOI: 10.1002/dvdy.21190. PMID: 17557303.
33. Margaryan N.V., Strizzi L., Abbott D.E. et al. EphA2 as a promoter of melanoma tumorigenicity. Cancer Biol Ther 2009;8(3):279–88. PMID: 19223760.
34. Hendrix M.J., Seftor E.A., Meltzer P.S. et al. Expression and functional significance of VE-cadherin in aggressive human melanoma cells: role in vasculogenic mimicry. Proc Natl Acad Sci USA 2001;98(14):8018–23. DOI: 10.1073/pnas.131209798. PMID: 11416160.
35. Cong R., Sun Q., Yang L. et al. Effect of Genistein on vasculogenic mimicry formation by human uveal melanoma cells. J Exp Clin Cancer Res 2009;28:124. DOI: 10.1186/1756-996628-124. PMID: 19735546.
36. Liu R., Cao Z., Tu J. et al. Lycorine hydrochloride inhibits metastatic melanoma cell-dominant vasculogenic mimicry. Pigment Cell Melanoma Res 2012;25(5):630–8. DOI: 10.1111/ j.1755-148X.2012.01036.x. PMID: 22781316.
37. Hess A.R., Seftor E.A., Gruman L.M. et al. VE-cadherin regulates EphA2 in aggressive melanoma cells through a novel signaling pathway: implications. Cancer Biol Ther 2006;5(2):228–33. PMID: 16481735.
38. Hess A.R., Postovit L.M., Margaryan N.V. et al. Focal adhesion kinase promotes the aggressive melanoma phenotype. Cancer Res 2005;65(21):9851–60. DOI: 10.1158/0008-5472.CAN-05-2172. PMID: 16267008.
39. Hess A.R., Hendrix M.J. Focal adhesion kinase signaling and the aggressive melanoma phenotype. Cell Cycle 2006;5(5):478–80. DOI: 10.4161/cc.5.5.2518. PMID: 16552181.
40. Lissitzky J.C., Parriaux D., Ristorcelli E. et al. Cyclic AMP signaling as a mediator of vasculogenic mimicry in aggressive human melanoma cells in vitro. Cancer Res 2009;69(3):802–9. DOI: 10.1158/0008-5472.CAN-08-2391. PMID: 19176384.
41. Chen L.X., He Y.J., Zhao S.Z. et al. Inhibition of tumor growth and vasculogenic mimicry by curcumin through down-regulation of the EphA2/ PI3K/MMP pathway in a murine choroidal melanoma model. Cancer Biol Ther 2011;11(2):229–35. PMID: 21084858.
42. Seftor R.E., Seftor E.A., Koshikawa N. et al. Cooperative interactions of laminin 5 γ2 chain, matrix metalloproteinase-2, and membrane type-1-matrix/ metalloproteinase are required for mimicry of embryonic vasculogenesis by aggressive melanoma. Cancer Res 2011;61(17):6322–7. PMID: 11522618.
43. Seftor E.A., Meltzer P.S., Kirschmann D.A. et al. The epigenetic reprogramming of poorly aggressive melanoma cells by a metastatic microenvironment. J Cell Mol Med 2006;10(1):174–96. PMID: 16563230.
44. Hess A.R., Seftor E.A., Seftor R.E., Hendrix M.J. Phosphoinositide 3-kinase regulates membrane type 1-matrix metalloproteinase (MMP) and MMP-2 activity during melanoma cell vasculogenic mimicry. Cancer Res 2003;63(16):4757–62. PMID: 12941789.
45. Zhang S., Li M., Gu Y. et al. Thalidomide influences growth and vasculogenic mimicry channel formation in melanoma. J Exp Clin Cancer Res 2008;27:60. DOI: 10.1186/1756-996627-60. PMID: 18983651.
46. Zhang S., Zhang D., Sun B. Vasculogenic mimicry: current status and future prospects. Cancer Lett 2007;254(2):157–64. DOI: 10.1016/j.canlet.2006.12.036. PMID: 17306454.
47. Seftor R.E., Seftor E.A., Kirschman D.A., Hendrix M.J. Targeting the tumor microenvironment with chemically modified tetracyclines: inhibition of laminin 5 γ2 chain promigratory fragments and vasculogenic mimicry. Mol Cancer Ther 2002;1(13): 1173–9. PMID: 12479698.
48. Zhao L., Marshall E.S., Kelland L.R., Baguley B.C. Evidence for the involvement of p38 MAP kinase in the action of the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA). Invest New Drugs 2007;25(3):271–6. DOI: 10.1007/s10637-006-9029-0. PMID: 17203401.
49. Hardy K.M., Kirschmann D.A., Seftor E.A. et al. Regulation of the embryonic morphogen Nodal by Notch4 facilitates manifestation of the aggressive melanoma phenotype. Cancer Res 2010;70(24):10340–50. DOI: 10.1158/0008-5472.CAN-10-0705. PMID: 21159651.
50. Strizzi L., Postovit L.M., Margaryan N.V. et al. Nodal as a biomarker for melanoma progression and a new therapeutic target for clinical intervention. Expert Rev Dermatol 2009;4(1):67–78. DOI: 10.1586/17469872.4.1.67. PMID: 19885369.
51. Sun B., Zhang D., Zhang S. et al. Hypoxia influences vasculogenic mimicry channel formation and tumor invasion-related protein expression in melanoma. Cancer Lett 2007;249(2):188–97. DOI: 10.1016/j.canlet.2006.08.016. PMID: 16997457.
52. Zhao N., Sun B.C., Sun T. et al. Hypoxia-induced vasculogenic mimicry formation via VE-cadherin regulation by Bcl-2. Med Oncol 2012;29(5):3599–607. DOI: 10.1007/s12032-012-0245-5. PMID: 22562824.
53. Comito G., Calvani M., Giannoni E. et al. HIF-1α stabilization by mitochondrial ROS promotes MET-dependent invasive growth and vasculogenic mimicry in melanoma cells. Free Radic Biol Med 2011;51(4):893–904. DOI: 10.1016/j.freeradbiomed.
54. 05.042. PMID: 21703345. 54. Wu S., Singh R.K. Resistance to chemotherapy and molecularly targeted therapies: rationale for combination therapy in malignant melanoma. Curr Mol Med 2011;11(7):553–63. PMID: 21707515.
55. Benazzi C., Al-Dissi A., Chau C.H. et al. Angiogenesis in spontaneous tumors and implications for comparative tumor biology. Scientific World Journal 2014;2014:919570. DOI: 10.1155/2014/919570. PMID: 24563633.
56. Schnegg C.I., Yang M.H., Ghosh S.K., Hsu M.Y. Induction of vasculogenic mimicry overrides VEGF-A silencing and enriches stem-like cancer cells in melanoma. Cancer Res 2015;75(8):1682–90. DOI: 10.1158/0008-5472.CAN-14-1855. PMID: 25769726.
57. Vartanian A.A., Burova O.S., Stepanova E.V. et al. Melanoma vasculogenic mimicry is strongly related to reactive oxygen species level. Melanoma Res 2007;17(6):370–9. DOI: 10.1097/CMR.0b013e3282f1d2ec. PMID: 17992120.
58. van der Schaft D.W., Seftor R.E., Seftor E.A. et al. Effects of angiogenesis inhibitors on vascular network formation by human endothelial and melanoma cells. J Natl Cancer Inst 2004;96(19):1473–7. DOI: 10.1093/jnci/ djh267. PMID: 15467037.
59. Spinella F., Caprara V., Di Castro V. et al. Endothelin-1 induces the transactivation of vascular endothelial growth factor receptor-3 and modulates cell migration and vasculogenic mimicry in melanoma cells. J Mol Med (Berl) 2013;91(3):395–405. DOI: 10.1007/s00109-012-0956-2. PMID: 22965194.
60. Orgaz J.L., Ladhani O., Hoek K.S. et al. Loss of pigment epithelium derived factor enables migration, invasion and metastatic spread of human melanoma. Oncogene 2008;28(47):4147–61. DOI: 10.1038/onc.2009.284. PMID: 19767774.
61. Rothhammer T., Bataille F., Spruss T. et al. Functional implication of BMP4 expression on angiogenesis in malignant melanoma. Oncogene 2007;26(28):4158–70. DOI: 10.1038/sj.onc.1210182. PMID: 17173062.
62. Su F., Li B., Wang J. et al. Molecular regulation of vasculogenic mimicry in human uveal melanoma cells: role of helix-loop-helix ID2. Graefes Arch Clin Exp Ophthalmol 2009;247(3):411–9. DOI: 10.1007/s00417-008-1008-z. PMID: 19043732.
63. Liu Y.R., Sun B., Zhao X.L. et al. Basal caspase-3 activity promotes migration, invasion, and vasculogenic mimicry formation of melanoma cells. Melanoma Res 2013;23(4):243–53. DOI: 10.1097/CMR.0b013e3283625498. PMID: 23695439.
64. Vartanian A.A., Burova O.S., Stepanova E.V., Baryshnikov A.Y. The involvement of apoptosis in melanoma vasculogenic mimicry. Melanoma Res 2007;17(1):1–8. DOI: 10.1097/ CMR.0b013e3280112b76. PMID: 17235236.
65. Mourad-Zeidan A.A., Melnikova V.O., Wang H. et al. Expression profiling of galectin-3-depleted melanoma cells reveals its major role in melanoma cell plasticity and vasculogenic mimicry. Am J Pathol 2008;173(6):1839–52. DOI: 10.2353/ajpath.2008.080380. PMID: 18988806.
66. Makitie T., Summanen P., Tarkkanen A., Kivela T. Microvascular loops and networks as prognostic indicators in choroidal and ciliary body melanomas. J Natl Cancer Inst 1999;91(4):359–67. PMID: 10050870.
67. Folberg R., Rummelt V., Parys-Van Ginderdeuren R. et al. The prognostic value of tumor blood vessel morphology in primary uveal melanoma. Ophthalmology 1993;100(9):1389–98. PMID: 8371929.
68. Warso M.A., Maniotis A.J., Chen X. et al. Prognostic significance of periodic acid-Schiff-positive patterns in primary cutaneous melanoma. Clin Cancer Res 2001;7(3):473–7. PMID: 11297236.
69. Cao Z., Bao M., Miele L. et al. Tumour vasculogenic mimicry is associated with poor prognosis of human cancer patients: a systemic review and meta-analysis. Eur J Cancer 2013;49(18):3914–23. DOI: 10.1016/j.ejca.2013.07.148. PMID: 23992642.
70. Einspahr J.G., Thomas T.L., Saboda K. et al. Expression of vascular endothelial growth factor in early cutaneous melanocytic lesion progression. Cancer 2007;110(11):2519–27. DOI: 10.1002/cncr.23076. PMID: 17932890.
71. Modlin R.L., Gottlieb B., Taylor C., Rea T.H. Identification of cells lining pseudovascular spaces of benign pigmented nevi. Am J Dermatopathol 1984;6 Suppl:25–9. PMID: 6084957.
72. Lee K.H., Han Y.W., Park C.J. Three cases of melanocytic nevi with pseudovascular spaces. Korean J Dermatol 2007;45(1):90–3.
73. Demitsu T., Kakurai M., Yamada T. et al. The vascular space-like structure in melanocytic nevus is not an injection artifact: report of a case and an experimental study. J Dermatol 1998;25(3):143–9. PMID: 9575674.
74. Goldstein A.M., Tucker M.A. Dysplastic nevi and melanoma. Cancer Epidemiol Biomarkers Prev 2013;22(4):528–32. DOI: 10.1158/1055-9965.EPI-12-1346. PMID: 23549396.
75. Coupland S.E., Lake S.L., Zeschnigk M., Damato B.E. Molecular pathology of uveal melanoma. Eye 2013;27(2):230–42. DOI: 10.1038/eye.2012.255. PMID: 23222563.
76. Chang S.H., Worley L.A., Onken M.D., Harbour J.W. Prognostic biomarkers in uveal melanoma: evidence for a stem cell-like phenotype associated with metastasis. Melanoma Res 2008;18(3):191–200. DOI: 10.1097/ CMR.0b013e3283005270. PMID: 18477893.
77. Gould Rothberg B.E., Bracken M.B., Rimm D.L. Tissue biomarkers for prognosis in cutaneous melanoma: a systematic review and meta-analysis. J Natl Cancer Inst 2009;101(7):452–74. DOI: 10.1093/jnci/djp038. PMID: 19318635.
Рецензия
Для цитирования:
Ротин Д.Л., Титов К.С., Казаков А.М. Васкулогенная мимикрия при меланоме: молекулярные механизмы и клиническое значение. Российский биотерапевтический журнал. 2019;18(1):16-24. https://doi.org/10.17650/1726-9784-2019-18-1-16-24
For citation:
Rotin D.L., Titov K.S., Kazakov A.M. Vasculogenic mimicry in melanoma: molecular mechanisms and clinical significance. Russian Journal of Biotherapy. 2019;18(1):16-24. (In Russ.) https://doi.org/10.17650/1726-9784-2019-18-1-16-24