The overexpression of IGF-1 is a poor prognostic factor in multiple myeloma
https://doi.org/10.17650/1726-9784-2019-18-1-42-49
Abstract
Introduction . Insulin-like growth factors (IGF) are one of the widely studied factors in oncology. For tumors with a high expression level of IGF typical postoperative relapse, they are invasive and give distant metastases. There are also data on the participation of IGF in the emergence of resistance to anticancer drugs. The mechanisms that determine the influence of insulin-like growth factors on the progression of a number of malignant neoplasms remain undisclosed and carrying out fundamental research in this direction is relevant. Objective: to study the role of IGF type 1 (IGF-1) in multiple myeloma (MM).
Materials and methods . 26 samples of bone marrow aspirates received from 26 patients – 14 men and 12 women – were studied in the work. All patients were diagnosed with stage III ММ. The age of patients ranged from 52 to 72 years. From the obtained bone marrow aspirates, using centrifugation in the Ficoll gradient, a mononuclear fraction of bone marrow cells containing plasma cells was obtained. Then we carried out the procedure of extracting RNA and using polymerase chain reaction with reverse transcription, we studied the expression of mRNA of the genes of IGF-1 and MDR1/ABCB1.
Results . The paper analyzes the overall survival (OS) of patients with MM depending on the expression of the gene IGF-1. It is shown that for patients with MM who have a high level of IGF-1 expression, a decrease in OS is characteristic and, conversely, with a weak expression of IGF-1 or in the absence of its expression, an increase in OS is observed. Studies of expression of IGF-1 gene and MDR1/ABCB1 gene responsible for the occurrence of multiple drug resistance showed that these genes are co-expressed in patients with MM. Conclusion . The obtained results indicate that the high level of IGF-1 gene expression may be a poor prognostic factor in ММ. IGF-1 may participate in regulation of the mechanisms of emergence of multiple drug resistance in patients with MM.
About the Authors
S. S. ShushanovRussian Federation
24 Kashirskoe Shosse, Moscow 115478
T. A. Kravtsova
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
A. V. Vaiman
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
N. P. Akentieva
Russian Federation
1 Prospect Akademika Semenova, Chernogolovka, Moscow region 142432
Yu. B. Chernykh
Russian Federation
61/2 Shchepkina St., Moscow 129110
References
1. Вотякова О.М., Демина Е.А. Множественная миелома. В кн.: Клиническая онкогематология. Руководство для врачей. Под ред. М.А. Волковой. 2-е изд., перераб. и доп. М.: Медицина, 2007. С. 847–73. [Votyakova O.M., Demina E.A. Multiple myeloma. In: Clinical oncohematology. A guide for physicians. Ed. by M.A. Volkova. 2nd edn, revised and updated. Moscow: Medicine, 2007. Pp. 847–73. (In Russ.)].
2. Шушанов C.C. Роль инсулиноподобного фактора роста 1 типа (IGF-1) и некоторых других членов системы IGF/инсулин в прогрессии множественной миеломы. Российский биотерапевтический журнал 2012;11(3):71–80. [Shushanov S.S. The role of insulin-like growth factor 1 type (IGF-1) and some other members of the IGF/insulin system in the progression of multiple myeloma. Rossiysky bioterapevtichesky zhurnal = Russian Journal of Biotherapy 2012;11(3):71–80. (In Russ.)].
3. Yang W.C., Lin S.F., Su Y.C. Multiple Myeloma: Personalised Medicine Based on Pathogenesis. EMJ 2018;3(2):78–89.
4. Lohit K.K., Bhubaneswar S. Recent advances in molecular pathogenesis of multiple myeloma – Role of cytokine: Review of literature. Int J Med Health Res 2016;2(3):43–5.
5. Jurczyszyn A., Czepiel J., GdulaArgasińska J. еt al. The analysis of the relationship between multiple myeloma cells and their microenvironment. J Cancer 2015;6(2):160–8. DOI: 10.7150/jca.10873. PMID: 25561981.
6. Bieghs L., Brohus М., Kristensen I.B. et al. Abnormal IGF-binding protein profile in the bone marrow of multiple myeloma patients. PLoS One 2016;11(4):e0154256. DOI: 10.1371/journal.pone.0154256. PMID: 27111220.
7. Bieghs L., Johnsen H.E., Maes K. et al. The insulin-like growth factor system in multiple myeloma: diagnostic and therapeutic potential. Oncotarget 2016;7(30):48732–52. DOI: 10.18632/ oncotarget.8982. PMID: 27129151.
8. Nass J., Efferth T. Drug targets and resistance mechanisms in multiple myeloma. Cancer Drug Resist 2018;1:87–117. DOI: 10.20517/cdr.2018.04.
9. Krishnan S.R., Jaiswal R., Brown R.D. et al. Multiple myeloma and persistence of drug resistance in the age of novel drugs. Int J Oncol 2016;49(1):33–50. DOI: 10.3892/ijo.2016.3516. PMID: 27175906.
10. Черных Ю.Б., Голенков А.К., Шушанов С.С. и др. Влияние экспрессии генов множественной лекарственной устойчивости при множественной миеломе на клиническое течение заболевания. Альманах клинической медицины 2016;44(5):624–30. [Chernykh Yu.B., Golenkov A.K., Shushanov S.S. et al. The effect of gene expression of multidrug resistance in multiple myeloma on the clinical course of the disease. Almanakh klinicheskoy meditsiny = Almanac of Clinical Medicine 2016;44(5):624–30. (In Russ.)].
11. Durie B.G., Salmon S.E. A clinical staging system for multiple myeloma. Correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival. Cancer 1975;36(3):842–54. PMID: 1182674.
12. Demchenko Y.N., Kuehl W.M. A critical role for the NFkB pathway in multiple myeloma. Oncotarget 2010;1(1):58–69. DOI: 10.18632/oncotarget.109. PMID: 20890394.
13. Mitsiades C.S., Mitsiades N., Poulaki V. et al. Activation of NF-kappaB and upregulation of intracellular antiapoptotic proteins via the IGF-1/Akt signaling in human multiple myeloma cells: therapeutic implications. Oncogene 2002;21(37):5673–83. DOI: 10.1038/sj. onc.1205664. PMID: 12173037.
14. Bentires-Alj M., Barbu V., Fillet M. et al. NF-kappaB transcription factor induces drug resistance through MDR1 expression in cancer cells. Oncogene 2003;22(1):90–7. DOI: 10.1038/sj.onc.1206056. PMID: 12527911.
15. Maiso P., Ocio E.M., Garayoa M. et al. The insulin-like growth factor-I receptor inhibitor NVP-AEW541 provokes cell cycle arrest and apoptosis in multiple myeloma cells. Br J Haematol 2008;141(4):470–82. DOI: 10.1111/j.13652141.2008.07049.x. PMID: 18341634.
16. Kuhn D.J., Berkova Z., Jones R.J. et al. Targeting the insulin-like growth factor-1 receptor to overcome bortezomib resistance in preclinical models of multiple myeloma. Blood 2012;120(16):3260–70. DOI: 10.1182/ blood-2011-10-386789. PMID: 22932796.
17. Abdi J., Chen G., Chang H. Drug resistance in multiple myeloma: latest findings and new concepts on molecular mechanisms. Oncotarget 2013;4(12):2186– 207. DOI: org/10.18632/ oncotarget.1497. PMID: 24327604.
18. Шушанов C.C., Марьина Л.Г., Черных Ю.Б., Какпакова Е.С. Коэкспрессия мРНК генов систем IGF/инсулин и множественной лекарственной устойчивости у больных множественной миеломой. Клиническая онкогематология 2010;3(2):105–13. [Shushanov S.S., Maryina L.G., Chernykh Yu.B., Kakpakova E.S. Coexpression of IGF/ insulin gene mRNA and multidrug resistance in patients with multiple myeloma. Klinicheskaya onkogematologiya = Clinical Oncohematology 2010;3(2):105–13. (In Russ.)].
Review
For citations:
Shushanov S.S., Kravtsova T.A., Vaiman A.V., Akentieva N.P., Chernykh Yu.B. The overexpression of IGF-1 is a poor prognostic factor in multiple myeloma. Russian Journal of Biotherapy. 2019;18(1):42-49. (In Russ.) https://doi.org/10.17650/1726-9784-2019-18-1-42-49