Complex cytogenetic research of cryptic chromosomal aberrations in patients with multiple myeloma
https://doi.org/10.17650/1726-9784-2019-18-1-50-59
Abstract
Background . Multiple myeloma (MM) is a malignant lymphoproliferative B-cell disease characterization by clonal proliferation of plasma cells in the bone marrow and beyond its borders. Currently, a wide range of cytogenetic anomalies and molecular-biological parameters are studied as prognostic factors.
Objective: a comparative study of the frequency, features and clinical significance of chromosomal abnormalities in MM by conventional cytogenetic and fluorescent in situ hybridization (FISH) methods.
Materials and methods . 77 patients with MM, which admitted in N.N. Blokhin National Medical Research Center of Oncology, were included in the study from 2016 to 2017.
Results . Chromosomal alterations were detected only in one case (1/77) by conventional cytogenetic method G-banding. However cytogenetic aberrations were revealed in 26 % of cases (20/77) using FISH. Deletions of different regions of chromosomes, indicating the possible presence of a hypodiploid clone or loss of some regions, were found in one patient in the second FISH analysis after 6 months. In the cohort of patients with chromosomal abnormalities (n = 20) a partial trisomy 11q, a deletion of the region q32 of the chromosome 14, a translocation t(4;14)(p16;q32) and IGHV gene rearrangement were determined in 30 % (6/20) as sole anomalies. Two or more cytogenetic aberrations were identified in the remaining 14 patients. Our study confirms that chromosomal abnormalities are more likely detected at later stages of MM (IA и IIA – 0 %, IIIA и IIIВ – 27 and 47 % respectively).
Conclusion . FISH allows to detect chromosomal changes in tumor plasma cells regardless of the mitosis phase. In MM, it becomes particularly important in connection with low proliferative activity of plasma cells. Additionally, in the fourth of MM patients in the study submicroscopic chromosomal aberrations were discovered using FISH. The improvement of the probe panel and the widespread use of locus specific FISH don’t replace G-banding that allows to see damages of all chromosomes at once.
About the Authors
A. A. SolodovnikRussian Federation
24 Kashirskoe Shosse, Moscow 115478
А. S. Mkrtchyan
Russian Federation
104 Profsojuznaya St., Moscow 117279
V. A. Misyurin
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
L. A. Kesaeva
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
N. N. Kasatkina
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
O. M. Votyakova
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
O. Yu. Yakimovich
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
E. G. Medvedovskaya
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
A. S. Antipova
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
I. Z. Zavodnova
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
O. A. Kolomeytsev
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
A. D. Shirin
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
E. A. Osmanov
Russian Federation
Build. 2, 8 Trubetskaya St., Moscow 119991
A. V. Misyurin
Russian Federation
24 Kashirskoe Shosse, Moscow 115478;
104 Profsojuznaya St., Moscow 117279
References
1. Swerdlow S.H., Campo E., Harris N.L. et al. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 2017. P. 243.
2. Morgan G.J., Walker B.A., Davies F.E. The genetic architecture of multiple myeloma. Nat Rev Cancer 2012;12(5):335–48. DOI: 10.1038/ nrc3257. PMID: 22495321.
3. Kyle R.A., Durie B.G., Rajkumar S.V. et al. Monoclonal gammopathy of undetermined significance (MGUS) and smoldering (asymptomatic) multiple myeloma: IMWG consensus perspectives risk factors for progression and guidelines for monitoring and management. Leukemia 2010;24(6):1121–7. DOI: 10.1038/leu.2010.60. PMID: 20410922.
4. Kyle R.A., Remstein E.D., Therneau T.M. et al. Clinical course and prognosis of smoldering (asymptomatic) multiple myeloma. New Engl J Med 2007;356(25):2582–90. DOI: 10.1056/NEJMoa070389. PMID: 17582068.
5. Langer P.R., Waldrop A.A., Ward D.C. Enzymatic synthesis of biotin-labeled polynucleotides: novel nucleic acid affinity probes. Proc Natl Acad Sci USA 1981;78(11):6633–7. PMID: 6273878.
6. Luke S., Shepelsky M. FISH: recent advances and diagnostic aspects. Cell Vis 1998;5(1):49–53. PMID: 9660726.
7. Csaki A., Garwe F., Steinbrück A. et al. A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas. Nano Lett 2007;7(2):247–53. DOI: 10.1021/ nl061966x. PMID: 17249738.
8. Schröck E., du Manoir S., Veldman T. et al. Multicolor spectral karyotyping of human chromosomes. Science 1996;273:494–7. PMID: 8662537.
9. Speicher M.R., Gwyn Ballard S., Ward D.C. Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat Genet 1996;12(4):368–75. DOI: 10.1038/ng0496-368. PMID: 8630489.
10. Liehr T., Pellestor F. Fluorescence In Situ Hybridization (FISH), chapter Molecular Cytogenetics: The Standard FISH and PRINS Procedure. 2009. Pp. 23–34.
11. Guan X.Y., Trent J.M., Meltzer P.S. Generation of band-specific painting probes from a single microdissected chromosome. Hum Mol Genet 1993;2(8):1117–21. PMID: 8401492.
12. Guan X.Y., Zhang H., Bittner M. et al. Chromosome arm painting probes. Nat Genet. 1996;12(1):10–1. DOI: 10.1038/ ng0196-10. PMID: 8528238.
13. Pinkel D., Straume T., Gray J.W. Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci USA 1986;83(9):2934–8. PMID: 3458254.
14. Smadja N.V., Bastard C., Brigaudeau C. et al. Hypodiploidy is a major prognostic factor in multiple myeloma. Blood 2001;98(7):2229–38. PMID: 11568011.
15. Fonseca R., Blood E., Rue M. et al. Clinical and biologic implications of recurrent genomic aberrations in myeloma. Blood 2003;101(11):4569–75. DOI: 10.1182/blood-2002-10-3017. PMID: 12576322.
16. Bergsagel P.L., Kuehl W.M. Molecular pathogenesis and a consequent classification of multiple myeloma. J Clin Oncol 2005;23(26):6333–8. DOI: 10.1200/JCO.2005.05.021. PMID: 16155016.
17. Fonseca R., Bergsagel P.L., Drach J. et al. International Myeloma Working Group molecular classification of multiple myeloma: spotlight review. Leukemia 2009;23(12):2210–21. DOI: 10.1038/leu.2009.174. PMID: 19798094.
18. Fonseca R., Blood E.A., Oken M.M. et al. Myeloma and the t(11;14) (q13;q32): evidence for a biologically defined unique subset of patients. Blood 2002;99(10):3735–41. PMID: 11986230.
19. Walker B.A., Leone P.E., Chiecchio L. et al. A compendium of myelomaassociated chromosomal copy number abnormalities and their prognostic value. Blood 2010;116(15):e56–65. DOI: 10.1182/blood-2010-04-279596. PMID: 20616218.
20. Tricot G., Barlogie B., Jagannath S. et al. Poor prognosis in multiple myeloma is associated only with partial or complete deletions of chromosome 13 or abnormalities involving 11q and not with other karyotype abnormalities. Blood 1995;86(11):4250–6. PMID: 7492784.
21. Kuehl W.M., Bergsagel P.L. Multiple myeloma: evolving genetic events and host interactions. Nat Rev Cancer 2002;2(3):175–87. DOI: 10.1038/ nrc746. PMID: 11990854.
22. Bergsagel P.L., Kuehl W.M. Chromosome translocations in multiple myeloma. Oncogene 2001;20(40):5611– 22. DOI: 10.1038/sj.onc.1204641. PMID: 11607813.
23. Bergsagel P.L., Chesi M., Nardini E. et al. Promiscuous translocations into immunoglobulin heavy chain switch regions in multiple myeloma. Proc Natl Acad Sci USA 1996;93(24):13931–6. PMID: 8943038.
24. Keats J.J., Reiman T., Maxwell C.A. et al. In multiple myeloma t(4;14)(p16;q32) is an adverse prognostic factor irrespective of FGFR3 expression. Blood 2003;101(4):1520–9. DOI: 10.1182/blood-2002-06-1675. PMID: 12393535.
25. Gertz M.A., Lacy M.Q., Dispenzieri A. et al. Clinical implications of t(11;14) (q13;q32), t(4;14) (p16.3;q32), and -17p13 in myeloma patients treated with high-dose therapy. Blood 2005;106(8):2837–40. DOI: 10.1182/blood-2005-04-1411. PMID: 15976175.
26. Avet-Loiseau H., Attal M., Moreau P. et al. Genetic abnormalities and survival in multiple myeloma: the experience of the Intergroupe Francophone du Myelome. Blood 2007;109(8):3489–95. DOI: 10.1182/blood-2006-08-040410. PMID: 17209057.
27. Elnenaei M.O., Hamoudi R.A., Swansbury J. et al. Delineation of the minimal region of loss at 13q14 in multiple myeloma. Genes Chromosomes Cancer 2003;36(1):99–106. DOI: 10.1002/gcc.10140. PMID: 12461754.
28. Drach J., Ackermann J., Fritz E. et al. Presence of a p53 gene deletion in patients with multiple myeloma predicts for short survival after conventional-dose chemotherapy. Blood 1998;92(3):802–9. PMID: 9680348.
29. Qazilbash M.H., Saliba R.M., Ahmed B. et al. Deletion of the short arm of chromosome 1 (del 1p) is a strong predictor of poor outcome in myeloma patients undergoing an autotransplant. Biol Blood Marrow Transplant 2007;13(9):1066–72. DOI: 10.1016/j.bbmt.2007.05.014. PMID: 17697969.
30. Wu K.L., Beverloo B., Lokhorst H.M. et al. Abnormalities of chromosome 1p/q are highly associated with chromosome 13/13q deletions and are an adverse prognostic factor of the outcome of highdose chemotherapy in patients with multiple myeloma. Br J Haematol 2007;136(4):615–23. DOI: 10.1111/j.1365-2141.2006.06481.x. PMID: 17223915.
31. Chang H., Ning Y., Qi X. et al. Chromosome 1p21 deletion is a novel prognostic marker in patients with multiple myeloma. Br J Haematol 2007;139(1):51–4. DOI: 10.1111/j.1365-2141.2007.06750.x. PMID: 17854306.
32. Hanamura I., Stewart J.P., Huang Y. et al. Frequent gain of chromosome band 1q21 in plasma-cell dyscrasias detected by fluorescence in situ hybridization: incidence increases from MGUS to relapsed myeloma and is related to prognosis and disease progression following tandem stem-cell transplantation. Blood 2006;108(5):1724–32. DOI: 10.1182/blood-2006-03-009910. PMID: 16705089.
33. Avet-Loiseau H., Li J.Y., Godon C. et al. P53 deletion is not a frequent event in multiple myeloma. Br J Haematol 1999;106(3):717–9. PMID: 10468863.
34. Liebisch P., Wendl C., Wellmann A. et al. High incidence of trisomies 1q, 9q, and 11q in multiple myeloma: results from a comprehensive molecular cytogenetic analysis. Leukemia 2003;17(12):2535–7. DOI: 10.1038/sj.leu.2403153. PMID: 14523465.
35. Chang H., Qi C., Yi Q.L. et al. p53 gene deletion detected by fluorescence in situ hybridization is an adverse prognostic factor for patients with multiple myeloma following autologous stem cell transplantation. Blood 2005;105(1):358–60. DOI: 10.1182/blood-2004-04-1363. PMID: 15339849.
36. Mazars G.R., Portier M., Zhang X.G. et al. Mutations of the p53 gene in human myeloma cell lines. Oncogene 1992;7(5):1015–8. PMID: 1373872.
37. Corradini P., Inghirami G., Astolfi M. et al. Inactivation of tumor suppressor genes, p53 and Rb1, in plasma cell dyscrasias. Leukemia 1994;8(5):758–67. PMID: 8182933.
38. Neri A., Baldini L., Trecca D. et al. p53 gene mutations in multiple myeloma are associated with advanced forms of malignancy. Blood 1993;81(1):128–35. PMID: 8417784.
39. Preudhomme C., Facon T., Zandecki M. et al. Rare occurrence of p53 gene mutations in multiple myeloma. Br J Haematol 1992;81(3):440–3. PMID: 1390218.
Review
For citations:
Solodovnik A.A., Mkrtchyan А.S., Misyurin V.A., Kesaeva L.A., Kasatkina N.N., Votyakova O.M., Yakimovich O.Yu., Medvedovskaya E.G., Antipova A.S., Zavodnova I.Z., Kolomeytsev O.A., Shirin A.D., Osmanov E.A., Misyurin A.V. Complex cytogenetic research of cryptic chromosomal aberrations in patients with multiple myeloma. Russian Journal of Biotherapy. 2019;18(1):50-59. (In Russ.) https://doi.org/10.17650/1726-9784-2019-18-1-50-59