Signaling TLR/RLR-mechanisms of immunomodulating action of ingavirin and thymogen preparations
https://doi.org/10.17650/1726-9784-2019-18-1-60-66
Abstract
Objective: to study drugs ingavirin and thymogen as activators of signal TLR and RLR reactions in a sensitive cell model of THP-1 monocytes and blood cells of donors.
Materials and methods . Investigated drugs ingavirin (imidazolylethanamide pentanedioic acid – 6-[2-(1H-imidazol-4-yl)ethylami- no]-5-oxohexanoic acid; Valenta Pharmaceutics, Russia) and thymogen (alpha-glutamyl-tryptophan; Cytomed, Russia), registered in Russia as medicines. The expression of TLR/RLR receptor genes was determined under the action of ingavirin 50–300 μg/ml and thymogen 0.1–5 μg/ml (24 h, 37 °C) using quantitative RT-PCR. The level of fluid cytokines was determined using ELISA kits (Vec- tor-Best, Russia) in the culture fluid. Transfection of small inhibitory RNA (siRNA) MAVS was performed using the reagent Lipofect- amine 2000 (Invitrogen). The immunophenotype of the THP-1 cell line was determined by flow cytometry with labeled monoclonal antibodies FITC CD14 and PE CD34 (BD Biosciences) on a FACSCanto II instrument (Becton Dickinson).
Results . For the first time, it has been shown that ingavirin (imidazolylethanamide) and thymogen (dipeptide Glu-Trp) preparations are activators of the immune TLR/RLR receptors and their signaling factors genes in the cultures of monocytic leukemia THP-1 and blood of healthy donors. In these cellular systems, ingavirin and thymogen preparations elicited similar immune responses and stimulated the expression of genes: endosomal TLR3/7/8/9 receptors, RIG1/MDA5 cytoplasmic sensors and NFκB1 and MAVS signaling factors. Induced cells secrete inflammatory cytokines of TNF-α and IL1-β. Ingavirin in THP-1 cell culture monocytes caused a decrease in CD34+ blast cells. Activation the genes of MAVS and co-receptor B2M of the main histocompatibility complex (MHCII) by ingavirin were interrelated. Transfection of siRNA MAVS reduced the level of homologous mRNA MAVS and heterologous mRNA B2M. Conclusion . The results obtained suggest that the antiviral and immunomodulating properties of the drugs ingavirin and thymogen are associated with the activation of a group of TLR/RLR signaling pathways of the innate and adaptive immunity and the differentiation of hematopoietic cell precursors.
About the Authors
T. M. SokolovaRussian Federation
18 Gamalei St., Moscow 123098
V. V. Poloskov
Russian Federation
18 Gamalei St., Moscow 123098
A. N. Shuvalov
Russian Federation
18 Gamalei St., Moscow 123098
O. S. Burova
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
Z. A. Sokolova
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
References
1. Pandey S., Singh S., Anang V. et al. Pattern recognition receptors in cancer progression and metastasis. Cancer Growth Metastasis 2015;8:25–34. DOI: 0.4137/CGM.S24314. PMID: 26279628.
2. Lester S.N., Li K. Toll-like receptors in antiviral innate immunity. J Mol Biol 2014;426(6):1246–64. DOI: 10.1016/j.jmb.2013.11.024. PMID: 24316048.
3. Cannova J., Breslin S.J.P., Zhang J. Tolllike receptor signaling in hematopoietic homeostasis and the pathogenesis of hematologic diseases. Front Med 2015;9(3):288–303. DOI: 10.1007/ s11684-015-0412-0. PMID: 26297301.
4. Kawai T., Akira S. Toll-like receptor and RIG-1-like receptor signaling. Ann NY Acad Sci 2008;1143:1–20. DOI: 10.1196/annals.1443.020. PMID: 19076341.
5. Колобухина Л.В., Меркулова Л.Н., Щелканов М.Ю. и др. Эффективность Ингавирина в лечении гриппа у взрослых. Терапевтический архив 2009;(3):51–3. [Kolobukhina L.V., Merkulova L.N., Schelkanov M.Yu. et al. Efficacy of Ingavirin in influenza treatment in adults. Terapevtichesky arkhiv = Therapeutic Archive 2009;(3):51–3. (In Russ.)].
6. Зарубаев В.В., Беляевская С.В., Сироткин А.К. и др. Влияние Ингавирина in vitro и in vivo на ультраструктуру и инфекционность вируса гриппа. Вопросы вирусологии 2011;56(5):21–5. [Zarubaev V.V., Belyaevskaya S.V., Sirotkin A.K. et al. In vitro and in vivo effects of Ingavirin on the ultrastructure and infectivity of influenza virus. Voprosy virusologii = Problems of Virology 2011;56(5):21–5. (In Russ.)].
7. Небольсин В.Е., Жданов В.В., Жуков Г.Н. и др. Механизмы протективного эффекта Дикарбамина на систему крови при лечении цитостатиками. Бюллетень экспериментальной биологии и meдицины 2011;3(150):343–7. [Nebolsin V.E., Zhdanov V.V., Zhukov G.N. et al. Mechanisms of protective effect of Dicarbamin on the blood system in cytostatic treatment. Bulleten experimentalnoy biologii i meditsiny = Bulletin of Experimental Biology and Medicine 2011;3(150):343–7. (In Russ.)]. DOI: 10.1007/s10517-011-1138-x.
8. Schön M.P., Schön M. Imiquimod: mode of action. Br J Dermatol 2007;157 Suppl 2:8–13. DOI: 10.1111/j.1365-2133.2007.08265.x. PMID: 18067624.
9. Бозрова С.В., Левицкий В.Л., Недоспасов С.А., Друцкая М.С. Имиквимод: биохимические механизмы иммуномодулирующей и противовоспалительной активности. Биомедицинская химия 2013;3(59):249–66. [Bozrova S.V., Levitsky V.L., Nedospasov S.A., Drutskaya M.S. Imiquimod: the biochemical mechanisms of immunomodulatory and anti- inflammatory activity. Biomeditsinskaya khimiya = Biomedical Chemistry 2013;3(59):249–66. (In Russ.)].
10. Patil S.A., Patil S.A., Patil R., Hashizume R. Imidazoquinolines: recent developments in anticancer activity. Mini Rev Med Chem 2016;16(4):309–22. PMID: 26675675.
11. Соколова Т.М., Шувалов А.Н., Полосков В.В., Ершов Ф.И. Стимуляция генов сигнальной трансдукции препаратами Ридостин, Циклоферон и Ингавирин. Цитокины и воспаление 2015;(2):26–34. [Sokolova T.M., Shuvalov A.N., Poloskov V.V., Ershov F.I. Stimulation of signaling transduction gene expression with drugs Ridostin, Cycloferon and Ingavirin. Tsitokiny i vospalenie = Cytokines and Inflammation 2015;(2):26–34. (In Russ.)].
12. Ашахер Т., Крохин А., Кузнецова И. и др. Влияние препарата Ингавирин (имидазолилэтанамида пентадиовой кислоты) на интерфероновый статус клеток в условиях вирусной инфекции. Эпидемиология и инфекционные болезни 2016;21(4):196–205. [Aschacher T., Krokhin A., Kuznetsova I. et al. Effect of the preparation Ingavirin® (imidazolyl ethanamide pentandioic acid) on the interferon status of cells under conditions of viral infection. Epidemiologiya i infektsionnie bolezni = Epidemiology and Infectious Diseases 2016;21(4):196–205. (In Russ.)]. DOI: 10.18821/1560-9529-2016-21-4196-205.
13. Семенова Н.П., Прокудина Е.Н., Львов Д.К., Небольсин В.Е. Влияние противовирусного препарата Ингавирин® на внутриклеточные преобразования и импорт в ядро нуклеокапсидного белка вируса гриппа. Вопросы вирусологии 2010;55(5):17– 20. [Semenova N.P., Prokudina E.N., Lvov D.K., Nebolsin V.E. Effect of the antiviral drug Ingaviruin® on intracellular transformations and import into the nucleus of influenza A virus nucleocapsid protein. Voprosy virusologii = Problems of Virology 2010;55(5):17–20. (In Russ.)].
14. Khavinson V.Kh., Lin’kova N.S., Tarnovskaya S.I. Short peptides regulate gene expression. Bull Exp Biol Med 2016;162(2):288–92. DOI: 10.1007/ s10517-016-3596-7. PMID: 27909961.
15. Romani L., Bistoni F., Montagnoli C. et al. Thymosin alpha1: an endogenous regulator of inflammation, immunity, and tolerance. Ann NY Acad Sci 2007;1112:326–38. DOI: 10.1196/ annals.1415.002. PMID: 17495242.
16. Garaci E., Pica F., Sinibaldi-Vallebona P. et al. Thymosin alpha(1) in combination with cytokines and chemotherapy for the treatment of cancer. Int Immunopharmacol 2003;3(8):1145–50. DOI: 10.1016/S1567-5769(03)00053-5. PMID: 12860169.
17. Lunin S.M., Novoselova E.G. Thymus hormones as prospective anti-inflammatory agents. Expert Opin Ther Targets 2010;14(8):775–86. DOI: 10.1517/14728 222.2010.499127. PMID: 20536297.
18. Morozov V.G., Khavinson V.K. Natural and synthetic thymic peptides as therapeutics for immune dysfunction. Int J Immunopharmacol 1997;19(9–10):501–5. PMID: 9637345.
19. Deigin V., Ksenofontova O., Khrushchev A. et al. Chemical platform for the preparation of synthetic orally active peptidomimetics with hemoregulating activity. ChemMed Chem 2016;11(18):1974–7. DOI: 10.1002/cmdc.201600157. PMID: 27457274.
20. Drobits B., Holcmann M., Amberg N. et al. Imiquimod clears tumors in mice independent of adaptive immunity by converting pDCs into tumor-killing effector cells. J Clin Invest 2012;122(2): 575–85. DOI: 10.1172/JCI61034. PMID: 22251703.
21. Chanput W., Mes J.J., Wichers H.J. THP-1 cell line: an in vitro cell model for immune modulation approach. Int Immunopharmacol 2014;23(1):37–45. DOI: 10.1016/j.intimp.2014.08.002. PMID: 25130606.
22. Соколова Т.М., Полосков В.В., Бурова О.С. и др. Действие интерферонов и ИФН-индукторов на экспрессию генов TLR/RLR-рецепторов и дифференцировку опухолевых линий клеток ТНР-1 и НСТ-116. Российский биотерапевтический журнал 2016;15(3):28–33. [Sokolova T.M., Poloskov V.V., Burova O.S. et al. Action interferons and IFN-inductors on TLR/ RLRs genes expression and differentiation of tumor cell lines THP-1 and HCN-116. Rossiysky bioterapevtichesky zhurnal = Russian Journal of Biotherapy 2016;15(3):28–33. (In Russ.)]. DOI: 10.17650/1726-9784-2016-15-3-28-33.
23. Cheng G., Zhong J., Chung J., Chisari F.V. Double-stranded DNA and double-stranded RNA induce a common antiviral signaling pathway in human cells. Proc Natl Acad Sci USA 2007;104(21):9035–40. DOI: 10.1073/pnas.0703285104. PMID: 17517627.
24. Cioca D.P., Aoki Y., Kiyosawa K. RNA interference is a functional pathway with therapeutic potential in human myeloid leukemia cell lines. Cancer Gene Ther 2003;10(2):125–33. DOI: 10.1038/sj.cgt.7700544. PMID: 12536201.
25. Diebold S.S., Kaisho T., Hemmi H. et al. Innate antiviral responses by means of TLR7-mediated recognition of singlestranded RNA. Science 2004;303:1529–31. DOI: 10.1126/science.1093616. PMID: 14976261.
26. Sioud M., Floisand Y., Forfang L., Lund-Johansen F. Signaling through toll-like receptor 7/8 induces the differentiation of human bone marrow CD34+ progenitor cells along the myeloid lineage. J Mol Biol 2006;364(5):945–54. DOI: 10.1016/j.jmb.2006.09.054. PMID: 17049554.
27. Loo Y.M., Gale M.Jr. Immune signaling by RIG-I-like receptors. Immunity 2011;34(5):680–92. DOI: 10.1016/j. immuni.2011.05.003. PMID: 21616437.
28. Seth R.B., Sun L., Ea C.K., Chen Z.J. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 2005;122(5):669–82. DOI: 10.1016/j.cell.2005.08.012. PMID: 16125763.
29. Russo C., Cornella-Taracido I., Galli-Stampino L. et al. Small molecule Toll-like receptor 7 agonists localize to the MHC class II loading compartment of human plasmacytoid dendritic cells. Blood 2011;117(21):5683–91. DOI: 10.1182/blood-2010-12-328138. PMID: 21487111.
30. Ignatz-Hoover J.J., Wang H., Moreton S.A. et al. The role of TLR8 signaling in acute myeloid leukemia differentiation. Leukemia 2015;29(4):918–26. DOI: 10.1038/leu.2014.293. PMID: 25283842.
Review
For citations:
Sokolova T.M., Poloskov V.V., Shuvalov A.N., Burova O.S., Sokolova Z.A. Signaling TLR/RLR-mechanisms of immunomodulating action of ingavirin and thymogen preparations. Russian Journal of Biotherapy. 2019;18(1):60-66. (In Russ.) https://doi.org/10.17650/1726-9784-2019-18-1-60-66