Preview

Российский биотерапевтический журнал

Расширенный поиск

Дофаминергическая система: стресс, депрессия, рак (часть 1)

https://doi.org/10.17650/1726-9784-2019-18-3-6-14

Полный текст:

Аннотация

В обзоре обсуждаются функциональные особенности дофаминергической системы. Синтез дофамина осуществляется как в центральной нервной системе, так и в желудочно-кишечном тракте. Первая часть обзора посвящена данным современной литературы о роли дофамина в механизмах старения. Вместе с тем описываются процессы, лежащие в основе депрессивного расстройства с точки зрения участия дофаминергической системы при интеграции моноаминергической, эпигенетической, воспалительной, нейротрофинной и антиапоптической концепций.

Об авторах

О. А. Бочарова
Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина Минздрава России
Россия
115478 Москва, Каширское шоссе, 24.


Е. В. Бочаров
Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина Минздрава России
Россия
115478 Москва, Каширское шоссе, 24.


В. Г. Кучеряну
Научно-исследовательский институт общей патологии и патофизиологии
Россия

125315 Москва, ул. Балтийская, 8.



Р. В. Карпова
Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина Минздрава России
Россия
115478 Москва, Каширское шоссе, 24.


Список литературы

1. Бочарова О.А. Адгезионная концепция в биологии злокачественного роста. Патологическая физиология и экспериментальная терапия 2014;(2):87—93.

2. Krizanova O., Babula P., Pacak K. Stress, catecholaminergic system and cancer. Stress 2016;19(4):419—28. DOI: 10.1080/10253890.2016.1203415.

3. Крыжановский Г.Н., Карабань И.Н., Магаева С.В. и др. Болезнь Паркинсона: этиология, патогенез, клиника, диагностика, лечение, профилактика. М.: Медицина, 2002. 372 с.

4. Iversen S.D., Iversen L.L. Dopamin: 50 years in perspective. Trends Neurosci 2007;30(5):188—93. DOI: 10.1016/j.tins.2007.03.002.

5. Гомазков О.А. Зачем мозгу нужны новые нервные клетки? М.: Икар, 2016. 140 с.

6. Spalding K.L., Bergmann O., Alkass K. et al. Dynamics of hippocampal neurogenesis in adult humans. Cell 2013;153(6):1219—27. DOI: 10.1016/j.cell.2013.05.002.

7. Ho N.F., Hooker J.M., Sahay A. et al. In vivo imaging of adult human hippocampal neurogenesis: progress, pitfalls and promise. Mol Psychiatry 2013;18(4): 404-16. DOI: 10.1038/mp.2013.8.

8. Bjorklund A., Dunnet S.B. Dopamine neuron systems in the brain: an update. Trends Neurocsience 2007;30(5):194-202. DOI: 10.1016/j.tins.2007.03.006.

9. Reeves S., Bench C., Howard R. Ageing and the nigrostriatal dopaminergic system. Int J Geriatr Psychiatry 2002;17(4):359—70. DOI: 10.1002/gps.606.

10. Evans M.D., Dizdaroglu M., Cooke M.S. Oxidative DNA damage and disease: induction, repair and significance. Mut Res 2004;567(1):1—61. DOI: 10.1016/j.mrrev.2003.11.001.

11. Альперина Е.Л. Вклад дофаминерги-ческой системы в механизмы иммуномодуляции. Успехи физиологических наук 2014;45(3):45—56.

12. Paladini C.A., Roeper J. Generating bursts(and pauses) in the dopamine midbrain neurons. Neuroscience 2014;282:109-21. DOI: 10.1016/j. neuroscience.2014.07.032.

13. Rangel-Barajas C., Coronel I., Floran B. Dopamine reseptors and neurodegeneration. Aging Dis 2015;6(5):349—68. DOI: 10.14336/AD.2015.0330.

14. Gao H.M., Liu B., Hong J.S. Critical role for microglial NADPH oxidase in rotenone-induced degeneration of dopaminergic neurons. J Neurosci 2003;23(15):6181—7. DOI: 10.1523/JNEUROSCI.23-15-06181.2003.

15. Halliwell B. Proteasomal dysfunction: a common feature of neurodegenerative diseases? Implications for the environ-mental origins of neurodegeneration. Antioxid Redox Signal 2006;8(11—12): 2007—719. DOI: 10.1089/ars.2006.8.2007.

16. Borges C.R., Geddes T., Watson J.T., Kuhn D.M. Dopamine biosynthesis is regulated by S-glutathionylation: potential mechanism of tyrosine hydroxylase inhibition during oxidative stress. J Biol Chem 2002;277(50): 48295—302. DOI: 10.1074/jbc.M209042200.

17. Parkinson G.M., Dayas C.V., Smith D.W. Increased mitochondrial DNA deletions in substantia nigra dopamine neurons of the aged rat. Curr Aging Sci 2014;7(3):155—60. DOI: 10.2174/1874609808666150122150850.

18. Cruz-Muros I., Afonso-Oramas D., Abreu P. et al. Aging of the rat mesostriatal system: Differences between the nigrostriatal and mesolimbic compartments. Exp Neurol 2007;204(1):147—61. DOI: 10.1016/j.expneurol.2006.10.004.

19. Gruden M.A., Yanamandra K., Kucheryanu V.G. et al. Correlation between protective immunity to a-synuclein aggregates, oxidative stress and inflammation. Neuroimmunomodulation 2012;19(6):334—42. DOI: 10.1159/000341400.

20. Бочаров Е.В., Крыжановский Г.Н., Полещук В.В. и др. Нарушение иммунной и антиоксидантной защиты при болезни Паркинсона. Патогенез 2012;(2):11 —4.

21. Крыжановский Г.Н., Магаева С.В., Морозов С.Г. Актуальные проблемы нейроиммунопатологии. М.: Гениус Медиа, 2012:131—47.

22. Beach T.G., Sue L.I., Walker D.G. et al. Marked microglial reaction in normal aging human substantia nigra: correlation with extroneuronal neuromelanin pigment deposits. Acta Neuropathol 2007;114(4):419—24. DOI: 10.1007/s00401-007-0250-5.

23. Пальцын А.А., Комиссарова С.В. Возрастные изменения мозга. Патологическая физиология и экспериментальная терапия 2015;59(4): 108—16.

24. Backman L., Nyberg L., Lindenberger U. et al. The correlative triad among aging, dopamine, and cognition: Current status and future prospects. Neurosci Biobehav Rev 2006;30(6):791 —807. DOI: 10.1016/j.neubiorev.2006.06.005.

25. Kubis N., Faucheux B.A., Ransmayr G. et al. Preservation of midbrain catecholaminergic neurons in very old human subjects. Brain 2000;123(20):366—73.

26. Rollo C.D., Dopamine and aging: intersecting facets. Neurochem Res 2009;34(4):601-29. DOI: 10.1007/s11064-008-9858-7.

27. Porcelli S., Drago A., Fabbri C., Serretti A. Mechanisms of antidepressant action: an integrated dopaminergic perspective. Prog Neuropsychopharmacol Biol Psychiatry 2011;35(7):1532—43. DOI: 10.1016/j.pnpbp.2011.03.005.

28. Friedman A., Deri I., Friedman Y. et al. Decoding of dopaminergic mesolimbic activity and depressive behavior. J Mol Neurosci 2007;32(1):72-9. DOI: 10.1007/s12031-007-0016-5.

29. Collingridge G.L., Peineau S., Howland J.G., Wang Y.T. Long-term depression in the CNS. Nat Rev Neurosci 2010; 11(7):459—73. DOI: 10.1038/nrn2867.

30. Morice E., Billard J.M., Denis C. et al. Parallel loss of hippocampal LTD and cognitive flexibility in a genetic model of hyperdopaminergia. Neuropsycho-pharmacology 2007;32(10):2108—16. DOI: 10.1038/sj.npp.1301354.

31. Wise R.A. Forebrain substrates of reward and motivation. J Comp Neurol 2005;493(1):115—21. DOI: 10.1002/cne.20689.

32. Carboni E., Silvagni A. Dopamine reuptake by norepinephrine neurons: exception or rule? Crit Rev Neurobiol 2004;16(1—2):121—8. DOI: 10.1615/CritRevNeurobiol.v16.i12.130.

33. Thase M.E. Bipolar depression: diagnostic and treatment considerations. Dev Psychopathol 2006;18(4):1213—30. DOI: 10.1017/S0954579406060585.

34. Weisler R.H. Calabrese J.R., Thase M.E. et al. Efficacy of quetiapine monotherapy for the treatment of depressive episodes in bipolar I disorder: a post hoc analysis of combined results from 2 double-blind, randomized, placebo-controlled studies. J Clin Psychiatry 2008;69(5):769-82. DOI:10.4088/JCP.v69n0510.

35. Obara Y., Nakahata N. The signaling pathway of neurotrophic factor biosynthesis. Drug News Perspect 2002;15(5):290—98. DOI: 10.1358/dnp.2002.15.5.840042.

36. Yamada K., Nabeshima T. Brain-derived neurotrophic factor/TrkB signaling in memory processes. J Pharmacol Sci 2003;91(4):267-70. DOI: 10.1254/jphs.91.267.

37. Lang U.E., Jockers-Scherubl M.C., Hellweg R. State of the art of the neurotrophin hypothesis in psychiatric disorders: implications and limitations. J Neural Transm 2004;111(3):387-411. DOI: 10.1007/s00702-003-0100-0.

38. Brunoni A.R., Lopes M., Fregni F. A systematic review and meta-analysis of clinical studies on major depression and BDNF levels: implications for the role of neuroplasticity in depression. Int J Neuropsychopharmacol 2008;11(8):1169—80. DOI: 10.1017/S1461145708009309.

39. Hutton C.P., Dery N., Rosa E. et al. Synergistic effects of diet and exercise on hippocampal function in chronically stressed mice. Neuroscience 2015;308:180-93. DOI: 10.1016/j.neuroscience.2015.09.005.

40. Pereira P.A., Millner T., Vilela M. et al. Nerve growth factor-induced plasticity in medial prefrontal cortex interneurons of aged Wistar rats. Exp Gerontol 2016;85:59-70. DOI: 10.1016/j.exger.2016.09.017.

41. Dantzer R., Bluthe R.M., Gheusi G. et al. Molecular basis of sickness behavior. Ann NY Acad Sci 1998;856:132-8. DOI: 10.1111/j.1749-6632.1998.tb08321.x.

42. Reichenberg A., Kraus T., Haack M. et al. Endotoxin-induced changes in food consumption in healthy volunteers are associated with TNF-alpha and IL-6 secretion. Psychoneuroendocrinology 2002;27(8):945-56. DOI: 10.1016/S0306-4530(01)00101-9.

43. Dieperink E., Ho S.B., Tetrick L. et al. Suicidal ideation during interferon-a2b and ribavirin treatment of patients with chronic hepatitis C. Gen Hosp Psychiatry 2004;26(3):237-40. DOI: 10.1016/j.genhosppsych.2004.01.003.

44. Kraus M.R., Schafer A., Faller H. et al. Psychiatric symptoms in patients with chronic hepatitis C receiving interferon alfa-2b therapy. J Clin Psychiatry 2003;64(6):708-14. DOI: 10.4088/JCP.v64n0614.

45. Maes M., Smith R., Scharpe S. The monocyte-T-lymphocyte hypothesis of major depression. Psychoneuroendocrinology 1995;20(2):111—6. DOI: 10.1016/0306-4530(94)00066-J.

46. Parker K.J., Schatzberg A.F., Lyons D.M. Neuroendocrine aspects of hypercortisolism in major depression. Horm Behav 2003;43(1):60—6. DOI:10.1016/S0018-506X(02)00016-8.

47. Dantzer R., O’Connor J.C., Freund G.G. et al. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 2008;9(1):46—56. DOI: 10.1038/nrn2297.

48. Tsankova N.M., Renthal W., Kumar A., Nestler E.J. Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci 2007;8(5):355—67. DOI: 10.1038/nrn2132.

49. Tsankova N.M., Kumar A., Nestler E.J. Histone modifications at gene promoter regions in rat hippocampus after acute and chronic electroconvulsive seizures. J Neurosci 2004;24(24):5603-10. DOI: 10.1523/JNEUROSCI.0589-04.2004.

50. Weaver I.C., Cervoni N., Champagne F.A. et al. Epigenetic programming by maternal behavior. Nat Neurosci 2004;7(8):847-54. DOI: 10.1038/nn1276.

51. Weaver I.C., Champagne FA., Brown S.E. et al. Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life. J Neurosci 2005;25(47):11045—54. DOI: 10.1523/JNEUROSCI.3652-05.2005.

52. Vucetic Z., Kimmel J., Totoki K. et al. Maternal high-fat diet alters methylation and gene expression of dopamine and opioid-related genes. Endocrinology 2010;151(10):4756—64. DOI: 10.1210/en.2010-0505.

53. Schroeder F.A., Lin C.L., Crusio W.E., Akbarian S. Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse. Biol Psychiatry 2007;62(1):55—64. DOI: 10.1016/j.biopsych.2006.06.036.

54. Yasuda S., Liang M.H., Marinova Z. et al. The mood stabilizers lithium and valproate selectively activate the promoter IV of brain-derived neurotrophic factor in neurons. Mol Psychiatry 2009;14(1): 51—9. DOI: 10.1038/sj.mp.4002099.

55. McKernan D.P., Dinan T.G., Cryan J.F. “Killing the Blues”: a role for cellular suicide(apoptosis) in depression and the antidepressant response? Prog Neurobiol 2009;88(4):246—63. DOI: 10.1016/j.pneurobio.2009.04.006.

56. Akhtar R.S., Ness J.M., Roth K.A. Bcl-2 family regulation of neuronal development and neurodegeneration. Biochim Biophys Acta 2004;1644(2—3):189—203. DOI: 10.1016/j.bbamcr.2003.10.013.

57. Mattson M.P. Apoptosis in neurodegene¬rative disorders. Nat Rev Mol Cell Biol 2000;1(2):120—9. DOI: 10.1038/35040009.

58. Buss R.R., Sun W., Oppenheim R.W. Adaptive roles of programmed cell death during nervous system development. Annual Reviews 2006;29:1-35. DOI: 10.1146/annurev.neuro.29.051605.m800.

59. Dwivedi Y., Rizavi H.S., Pandey G.N. Antidepressants reserve corticosteronemediated decrease in brain-derived neurotrophic factor expression: differential regulation of specific exons by antidepressants and corticosterone. Neuroscience 2006;139(3):1017—29. DOI: 10.1016/j.neuroscience.2005.12.058.

60. Duman C.H., Schlesinger L., Kodama M. et al. A role for MAP kinase signaling in behavioral models of depression and antidepressant treatment. Biol Psychiatry 2007;61(5):661—70. DOI: 10.1016/j.biopsych.2006.05.047.

61. Pittenger C., Duman R.S. Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology 2008;33(1):88—109. DOI: 10.1038/sj.npp.1301574.

62. Harlan J., Chen Y., Gubbins E. et al. Variants in Apaf-1 segregating with major depression promote apoptosome function. Mol Psychiatry 2006;11(1):76—85. DOI: 10.1038/sj.mp.4001755.

63. Saarelainen T., Hendolin P., Lucas G. et al. Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavorial effects. J Neurosci 2003;23(1):349—57. DOI: 10.1523/NEUROSCI.23-01-00349.2003.

64. Kim D.H., Li H., Yoo K.Y. et al. Effects of fluoxetine on ischemic cells and expressions in BDNF and some antioxidants in the gerbil hippocampal CA1 region induced by transient ischemia. Exp Neurol 2007;204(2):748—58. DOI: 10.1016/j.expneurol.2007.01.008.

65. Lucassen PJ., Fuchs E., Czeh B. Antidepressant treatment with tianeptine reduces apoptosis in the hippocampal dentate gyrus and temporal cortex. Biol Psychiatry 2004;55(8):789—96. DOI: 10.1016/j.biopsych.2003.12.014.

66. Nahon E., Israelson A., Abu-Hamad S., Varda S.B. Fluoxetine (Prozac) interaction with the mitochondrial voltage-dependent anion channel and protection against apoptotic cell death. FEBS Lett 2005;579(22):5105—10. DOI: 10.1016/j.febslet.2005.08.020.

67. Stavrovskaya I.G., Narayanan M.V., Zhang W. et al. Clinically approved heterocyclics act on a mitochondrial target and reduce stroke-induced pathology. J Exp Med 2004;200(2):211—22. DOI: 10.1084/jem.20032053.

68. Kosten T.A., Galloway M.P., Duman R.S. et al. Repeated unpredictable stress and antidepressants differentially regulate expression of the bcl-2 family of apoptotic genes in rat cortical, hippocampal, and limbic brain structures. Neuropsychopharmacology 2008;33(7):1545—58. DOI: 10.1038/sj.npp.1301527.

69. Murray F., Hutson P.H. Hippocampal Bcl-2 expression is selectively increased following chronic but not acute treatment with antidepressants, 5-HT(1A) or 5-HT (2C/2B) receptor antagonists. Eur J Pharmacol 2007;569(1—2):41—7. DOI: 10.1016/j.ejphar.2007.05.006.

70. Glantz LA., Gilmore J.H., Overstreet D.H. et al. Pro-apoptotic Par-4 and dopamine D2 receptor in temporal cortex in schizophrenia, bipolar disorder and major depression. Schizophr Res 2010;118(1—3): 292—9. DOI: 10.1016/j.schres.2009.12.027.

71. Collingridge G.L., Peineau S., Howland J.G., Wang Y.T. Long-term depression in the CNS. Nat Rev Neurosci 2010;11(7): 459—73. DOI: 10.1038/nrn2867.

72. Freyberg Z., Ferrando S.J., Javitch J.A. Roles of the Akt/GSK-3 and Wnt signaling pathways in schizophrenia and antipsychotic drug action. Am J Psychiatry 2010;167(4):388—96. DOI: 10.1176/appi.ajp.2009.08121873.

73. Tanti A., Belzung C. Open questions in current models of antidepressant action. Br J Pharmacol 2010;159(6):1187—200. DOI: 10.1111/j.1476-5381.2009.00585.x.


Для цитирования:


Бочарова О.А., Бочаров Е.В., Кучеряну В.Г., Карпова Р.В. Дофаминергическая система: стресс, депрессия, рак (часть 1). Российский биотерапевтический журнал. 2019;18(3):6-14. https://doi.org/10.17650/1726-9784-2019-18-3-6-14

For citation:


Bocharova O.A., Bocharov E.V., Kucheryanu V.G., Karpova R.V. Dopaminergic system: stress, depression, cancer (part 1). Russian Journal of Biotherapy. 2019;18(3):6-14. (In Russ.) https://doi.org/10.17650/1726-9784-2019-18-3-6-14

Просмотров: 204


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1726-9784 (Print)
ISSN 1726-9792 (Online)