Preview

Russian Journal of Biotherapy

Advanced search

Identification of immunogenic mutant neoantigens in the genome of murine melanoma

https://doi.org/10.17650/1726-9784-2019-18-3-23-30

Abstract

Introduction. One of the promising approaches to cancer immunotherapy is the generation of personal antitumor vaccines that provides immune system recognition of mutant tumor neoantigenes.

The aim of this study was to develop bioinformatic approaches for melanoma NGS-sequencing data analysis. On the basis of data obtained, to predict the peptides capable of inducing an immune response against B16F10 mouse melanoma.

Materials and methods. Exom and transcriptom of B16/F10 melanoma tumor tissue and normal tissue of C57BL/6 mice were sequenced. Library sequencing procedure was performed on Illumina HiSeq 2500platform, quality analysis of all obtained libraries was performed using FastQC and MultiQC. The obtainedfiles were usedfor further bioinformatics analysis. The GATKMuTect2 and Strelka were used for searching the mutations in tumor samples.

Results. Identification of somatic mutations specific for tumor was based on the analysis of few mice tumors. Here we show that mutations in different tumor samples significantly overlap, but are not identical. Prediction of short peptides affinity to the mouse main histocompatibility complex (MHC) H2 was performed using netMHCpan version 3.0. Mutations such as missense and frameshift were used to predict short peptides that could trigger an immune response. Transcriptome data confirm that mutated alleles are expressed in tumors. Vaxrank pipeline predicted immunogenic peptides with a length of25—27. We also present the synthesis and solubility of these peptides.

Conclusion. A bioinformatic approach has been developed to predict peptides capable of increasing immune response of mouse melanoma B16/F10.

About the Authors

V. S. Kosorukov
N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia
Russian Federation

24 Kashyrskoe Shosse, Moscow 115478.



M. A. Baryshnikova
N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia
Russian Federation

24 Kashyrskoe Shosse, Moscow 115478.



E. N. Kosobokova
N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia
Russian Federation

24 Kashyrskoe Shosse, Moscow 115478.



D. Yu. Yakovishina
Ksivalue LLC
Russian Federation
30A Leninskiy Prospekt, Moscow 119049.


A. S. Ershova
Ksivalue LLC
Russian Federation
30A Leninskiy Prospekt, Moscow 119049.


Yu. A. Pekov
Ksivalue LLC
Russian Federation
30A Leninskiy Prospekt, Moscow 119049.


References

1. Baryshnikova M.A., Kosobokova E.N., Kosorukov V.S. Neoantigens in tumor immunotherapy. Rossiysky bioterapevtichesky zhurnal = Russian Journal of Biotherapy 2018;17(2):5—14. (In Russ.).

2. Robbins P.F., El-Gamil M., Li Y.F. et al. A mutated beta-catenin gene encodes a melanoma-specific antigen recognized by tumor infiltrating lymphocytes. J Exp Med 1996;183:1185-92. DOI: 10.1084/jem.183.3.1185.

3. Castle J.C., Kreiter S., Diekmann J. et al. Exploiting the mutanome for tumor vaccination. Cancer Res 2012;75(5):1081-90. DOI: 10.1158/0008-5472.CAN-11-3722.

4. Robbins P.F., Lu Y.C., El-Gamil M. et al. Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med 2013; 19(6) /747-52. DOI: 10.1038/nm.3161.

5. Ott P.A., Hu Z., Keskin D.B. et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 2017;547:217-21. DOI: 10.1038/nature22991.

6. Singh H., Raghava G.P. ProPred1: prediction of promiscuous MHC Class-I binding sites. Bioinformatics 2003;19(8): 1009-14. DOI: 10.1093/bioinformatics/btg108.

7. Reche P.A., Glutting J.P. Enhancement to the RANKPEP resource for the pre-diction of peptide binding to MHC mol-ecules using profiles. Immunogenetics 2004;56(6):405-19. DOI: 10.1007/s00251-004-0709-7.

8. McGranahan N., Furness A.J., Rosen-thal R. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to im-mune checkpoint blockade. Science 2016;351(6280):1463-9. DOI: 10.1126/science.aaf1490..

9. Jurtz V., Paul S., Andreatta M. еt al. NetMHCpan-4.0: Improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data. J Immunol 2017;199(9): 3360-8. DOI: 10.4049/jimmunol.1700893.

10. Lundegaard C., Lamberth K., Harndahl M. et al. NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11. Nucleic Acids Res 2008;36(Web Server issue):509-12. DOI: 10.1093/nar/gkn202.

11. Rubinsteyn A., Hodes I., Kodysh J., Hammerbacher J. Vaxrank: A computational tool for designing per-sonalized cancer vaccines. available at: https://www.biorxiv.org/content/early/2018/10/18/142919

12. Rubinsteyn A., Kodysh J., Hodes I. et al. Computational pipeline for the PGV-001 neoantigen vaccine trial. Front Immunol 2018;8: 1807. DOI: 10.3389/fimmu.2017.01807.

13. Kyte J., Doolittle R.F. A simple method for displaying the hydropathic character of a protein. J Mol Biol 1982;157(1):105-32. DOI: 10.1016/0022-2836(82)90515-0.

14. Hebditch M., Carballo-Amador M.A., Charonis S. et al. Protein-Sol: a web tool for predicting protein solubility from sequence. Bioinformatics 2017;33(19):3098-100. DOI: 10.1093/bioinformatics/btx345.

15. Saunders C.T., Wong W.S., Swamy S. et al. Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs. Bioinfor-matics 2012;28(14):1811-7. DOI: 10.1093/bioinformatics/bts271.

16. Cibulskis K., Lawrence M.S., Carter S.L. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol 2013;31(3):213-9. DOI: 10.1038/nbt.2514.

17. Lower M., Renard B.Y., de Graaf J. et al. Confidence-based somatic mutation evaluation and prioritization. PLoS Comput Biol 2012;8(9):1002714. DOI: 10.1371/journal.pcbi.1002714.

18. Castle J.C., Lower M., Boegel S. et al. Mutated tumor alleles are expressed according to their DNA frequency. Sci Rep 2014;4:4743. DOI: 10.1038/srep04743.

19. Kreiter S., "Vbrmehr M., van de Roemer N. et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 2015;520(7549):692-6. DOI: 10.1038/nature14426.


Review

For citations:


Kosorukov V.S., Baryshnikova M.A., Kosobokova E.N., Yakovishina D.Yu., Ershova A.S., Pekov Yu.A. Identification of immunogenic mutant neoantigens in the genome of murine melanoma. Russian Journal of Biotherapy. 2019;18(3):23-30. (In Russ.) https://doi.org/10.17650/1726-9784-2019-18-3-23-30

Views: 806


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1726-9784 (Print)
ISSN 1726-9792 (Online)