Preview

Russian Journal of Biotherapy

Advanced search

MICROSATELLITE INSTABILITY AND GASTRIC CARCINOMA. REVIEW OF THELITERATURE

https://doi.org/10.17650/1726-9784-2019-18-4-17-24

Abstract

Carcinoma of the stomach is wide spread malignancy with the poor prognosis. Recent investigations of the genome features let to consider this tumor as heterogeneous lesion, presenting different biological subtypes. Each of those subtypes has its own definitive characteristics including difference in prognosis. Microsatellite instability (MSI) – epigenetic molecular abnormality known in many tumors. The role of MSI in the carcinoma of stomach, prognostic as well predictive, is still not clear. High incidence (10 up to 22 %) of MSI in carcinoma of stomach requires performing more extensive studying of this malignancy. The present review is dedicated to recent data of the literature, concerning clinical, morphological, prognostic and predictive features of MSI in the carcinoma of stomach.

About the Authors

D. L. Rotin
S. P. Botkin City Clinical Hospital
Russian Federation
5 Second Botkinskyi Proyezd, Moscow 125284, Russia


O. V. Paklina
S. P. Botkin City Clinical Hospital
Russian Federation
5 Second Botkinskyi Proyezd, Moscow 125284, Russia


I. O. Tin’kova
S. P. Botkin City Clinical Hospital
Russian Federation
5 Second Botkinskyi Proyezd, Moscow 125284, Russia


D. N. Grekov
S. P. Botkin City Clinical Hospital
Russian Federation
5 Second Botkinskyi Proyezd, Moscow 125284, Russia


References

1. Hause R.J., Pritchard C.C., Shendure J. et al. Classification and characterization of microsatellite instability across 18 cancer types. Nat Med 2016;22:1342–50. DOI: 10.1038/nm.4191.

2. Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2017. CA Cancer J Clin 2017;67(1):7–30. DOI: 10.3322/caac.21387.

3. Zehir A.R., Benayed R.H., Shah A. et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med 2017;23(6):703–13. DOI: 10.1038/nm.4333.

4. Bang Y.J., van Cutsem E., Feyereislova A. et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomized controlled trial. Lancet 2010;376(9742):687–97. DOI: 10.1016/s0140-6736(10)61121-x.

5. Kim S.H., Ahn B.K., Nam Y.S. et al. Microsatellite instability is associated with the clinicopathologic features of gastric cancer in sporadic gastric cancer patients. J Gastric Cancer 2010;10(4):149–54. DOI: 10.5230/jgc.2010.10.4.149.

6. Fuchs C.S., Tomasek J., Yong C.J. et al. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 2014; 383(9911):31–9. DOI: 10.1016/s0140-6736(13)61719-5.

7. Lin J.T., Wu M.S., Shun C.T. et al. Microsatellite instability in gastric carcinoma

8. Wilke H., Muro K., van Cutsem E. et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): a double-blind, randomised phase3 trial. Lancet Oncol 2014;15(11):1224–35. DOI: 10.1016/s1470-2045(14)70420-6.

9. with special references to histopathology and cancer stages. Eur J Cancer 1995;31A: 1879–82.

10. The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014;513(7517):202–9. DOI: 10.1038/nature13480.

11. Choi Y.Y., Bae J.M., An J.Y. et al. Is microsatellite instability a prognostic marker in gastric cancer? A systematic review with meta-analysis. J Surg Oncol 2014;1109(2):129–35. DOI: 10.1002/jso.23618.

12. Cristescu R., Lee J., Nebozhyn M. et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med 2015;21:449–56. DOI: 10.1038/nm.3850.

13. Kim S.Y., Choi Y.Y., An J.Y. et al. The benefit of microsatellite instability is attenuated by chemotherapy in stage II and stage III gastric cancer: results from a large cohort with subgroup analyses. Int J Cancer 2015;137(4):819–25. DOI: 10.1002/ijc.29449.

14. Baudrin L.G., Deleuze J.F., How-Kit A. Molecular and computational methods for the detection of microsatellite instability in cancer. Front Oncol 2018;12(8):621. DOI: 10.3389/fonc.2018.00621.

15. Mathiak M., Warneke V.S., Behrens H.M. et al. Clinicopathologic characteristics of microsatellite instable gastric carcinomas revisited: urgent need for standardization. Appl Immunohistochem Mol Morphol 2017;25:12–24. DOI: 10.1097/pai.0000000000000264.

16. Ryan E., Sheahan K., Creavin B. et al. The current value of determining the mismatch repair status of colorectal cancer: A rationale for routine testing. Crit Rev Oncol Hematol 2017;116:38–57. DOI:10.1016/j.critrevonc.2017.05.006.

17. Normanno N., Rachiglio A.M., Lambiase M. et al. Heterogeneity of KRAS, NRAS, BRAF and PIK3CA mutations inmetastatic colorectal cancer and potential effects on therapy in the CAPRI GOIM trial. Ann Oncol 2015;26(8):1710–14. DOI: org/10.1093/annonc/mdv176.

18. Laghi L., Bianchi P., Roncalli M., Malesci A. Revised Bethesda guidelines for hereditary nonpolyposis colorectal cancer(Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 2004;96:1402–3. DOI: 10.1093/jnci/djh280.

19. Mukohara T. PI3K mutations in breast cancer: prognostic and therapeutic implications. Breast Cancer 2015;7:111–23. DOI: 10.2147/BCTT.S60696.

20. Ratti M., Lampis A., Hahne J.C. et al. Microsatellite instability in gastric cancer: molecular bases, clinical perspectives, and new treatment approaches. Cell Mol Life Sci 2018;75(22):4151–62. DOI: 10.1007/s00018-018-2906-9.

21. Nakashima H., Honda M., Inoue H. et al. Microsatellite instability in multiple gastric cancers. Int J Cancer 1995;64: 239–42. DOI: 10.1002/ijc.2910640405.

22. Hudler P. Genetic aspects of gastric cancer instability. Sci World J 2012;2012:761909. DOI: 10.1100/2012/761909.

23. Kim J.Y., Shin N.R., Kim A. et al. Microsatellite instability status in gastric cancer: a reappraisal of its clinical significance and relationship with mucin phenotypes. Korean J Pathol 2013;47:28–35. DOI: 10.4132/KoreanJPathol.2013.47.1.28.

24. Cohen R., Buhard O., Cervera P. et al. Clinical and molecular characterization of hereditary and sporadic metastatic colorectal cancers harboring microsatellite instability/DNA mismatch repair deficiency. Eur J Cancer 2017;86:266–74. DOI: 10.1016/j.ejca.2017.09.022.

25. Nakajima T., Akiyama Y., Shiraishi J. et al. Age-related hypermethylation of the hMLH1 promoter in gastric cancers. Int J Cancer 2001;94(2):208–11. DOI: 10.1002/ijc.1454.

26. Boussios S., Ozturk M.A., Moschetta M. et al. The developing story of predictive biomarkers in colorectal cancer. J Pers Med 2019;7:9(1). DOI: 10.3390/jpm9010012.

27. Llosa N.J., Cruise M., Tam A. et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov 2015;5(1):43–51. DOI: 10.1158/2159-8290.cd-14-0863.

28. Valeri N., Gasparini P., Fabbri M. et al. Modulation of mismatch repair and genomic stability by miR-155. Proc Natl Acad Sci U S A 2010;107(15):6982–7. DOI: 10.1073/pnas.1015541107.

29. Ma C., Patel K., Singhi A.D. et al. Programmed death-ligand 1 expression is common in gastric cancer associated with Epstein–Barr virus or microsatellite instability. Am J Surg Pathol 2016;40:1496–506. DOI: 10.1097/pas.0000000000000698.

30. Byrne M., Saif M.W. Selecting treatment options in refractory metastatic colorectal cancer. Onco Targets Ther 2019;12:2271–8. DOI: 10.2147/OTT.S194605.

31. Kelderman S., Schumacher T.N., Kvistborg P. Mismatch repair-deficient cancers are targets for anti-PD-1 therapy. Cancer Cell 2015;28(1):11–3. DOI: 10.1016/j.ccell.2015.06.0012.

32. Ribic C.M., Sargent D.J., Moore M.J. et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med 2003;349(3):247–57. DOI: 10.1056/NEJMoa022289.

33. Cunningham D., Allum W.H., Stenning S.P. et al. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med 2006;355(1):11–20. DOI: 10.1056/nejmoa055531.

34. Polom K., Marano L., Marrelli D. et al. Meta-analysis of microsatellite instability in relation to clinicopathological characteristics and overall survival in gastric cancer. Br J Surg 2018;105(3):159–67. DOI: 10.1002/bjs.10663.

35. Miyoshi E., Haruma K., Hiyama T. et al. Microsatellite instability is a genetic marker for the development of multiple gastric cancers. Int J Cancer 2001;95(6): 350–3. DOI: 10.1002/1097-0215(20011120)95:6<350::aid-ijc1061>3.0.co;2-a.

36. An J.Y., Kim H., Cheong J.H. et al. Microsatellite instability in sporadic gastric cancer: its prognostic role and guidance for 5-FU based chemotherapy after R0 resection. Int J Cancer 2012;131(2):505–11. DOI: 10.1002/ijc.26399.

37. Ratti M., Lampis A., Jens C. et al. Microsatellite instability in gastric cancer: molecular bases, clinical perspectives, and new treatment approaches. Cell Mol Life Sci 2018;75(22):4151–62.

38. Zhao P., Li L., Jiang X., Li Q. Mismatch repair deficiency/microsatellite instability-high as a predictor for anti-PD-1/PD-L1 immunotherapy efficacy. J Hematol Oncol 2019;12(1):54. DOI: 10.1186/s13045-019-0738-1.

39. Smyth E.C., Wotherspoon A., Peckitt C. et al. Mismatch repair deficiency, microsatellite instability, and survival: an exploratory analysis of the medical research council adjuvant gastric infusional chemotherapy (MAGIC) trial. JAMA Oncol 2017;l3:1197–203. DOI: org/10.1001/jamaoncol.2016.6762.

40. Le D.T., Durham J.N., Smith K.N. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017;357:409–13. DOI: 10.1126/science.aan6733.

41. Le D.T., Uram J.N., Wang H. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 2015;372:2509–20.

42. Thompson E.D., Zahurak M., Murphy A. et al. Patterns ofPD-L1 expression and CD8 T cell infiltration in gastric adenocarcinomasand associated immune stroma. Gut 2017;66:794–801. DOI: org/10.1136/gutjnl-2015-310839.

43. Muro K., Chung H.C., Shankaran V. et al. Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): a multicentre, open-label, phase 1b trial. Lancet Oncol. 2016;17(6):717–26. DOI: 10.1016/s1470-2045(16)00175-3.

44. Yamamoto H., Imai K. Microsatellite instability: an update. Arch Toxicol 2015;89:899–921. DOI: 10.1007/s00204-015-1474-0.

45. Falchetti M., Saieva C., Lupi R. et al. Gastric cancer with high-level microsatellite instability: target gene mutations, clinicopathologic features, and long-term survival. Hum Pathol 2008;39:925–32. DOI: 10.1016/j.humpath.2007.10.024.

46. Tang S., Wu W.K., Li X. et al. Stratification of Digestive Cancers with Different Pathological Features and Survival Outcomes by MicroRNA Expression. Sci Rep 2016;15(6):244–66. DOI: 10.1038/srep24466.

47. Yuza K., Nagahashi M., Watanabe S. et al. Hypermutation and microsatellite instability in gastrointestinal cancers. Oncotarget 2017;8(67):112103–15. DOI: 10.18632/oncotarget.22783.

48. Corso G., Velho S., Paredes J. et al. Oncogenic mutations in gastric cancer with microsatellite instability. Eur J Cancer 2011;47:443–51. DOI: 10.1016/j.ejca.2010.09.008.

49. Leite M., Corso G., Sousa S. et al. MSI phenotype and MMR alterations in familial and sporadic gastric cancer. Int J Cancer 2011;128:1606–13. DOI: 10.1002/ijc.25495.

50. Vasen H.F.A., Blanco I., Aktan-Collan K. et al. Revised guidelines for the clinical management of Lynch syndrome (HNPCC): recommendations by a group of European experts. Gut 2013;62(6):812–23. DOI: org/10.1136/gutjnl-2012-304356.

51. Ottini L., Falchetti M., Lupi R. et al. Patterns of genomic instability in gastric cancer: clinical implications and perspectives. Ann Oncol 2006;17(Suppl. 7):97–102. DOI: 10.1093/annonc/mdl960.

52. Dudley J.C., Lin M.T., Le D.T., Eshleman J.R. Microsatellite instability as a biomarker for PD-1 blockade. Clin Cancer Res 2016;22(4):813–20. DOI: 10.1158/1078-0432.ccr-15-1678.

53. Berg K.D., Glaser C.L., Thompson R.E. et al. Detection of microsatellite instability by fluorescence multiplex polymerase chain reaction. J Mol Diagn 2000;2(1):20–8. DOI: 10.1016/s1525-1578(10)60611-3.

54. Deschoolmeester V., Baay M., Wuyts W. et al. Detection of microsatellite instability in colorectal cancer using an alternative multiplex assay of quasi-monomorphic mononucleotide markers. J Mol Diagn 2008;10(2):154–9. DOI: 10.2353/jmoldx.2008.070087.

55. Rigau V., Sebbagh N., Olschwang S. et al. Microsatellite instability in colorectal carcinoma. The comparison of immunohistochemistry and molecular biology suggests a role for hMSH6 [correction of hMLH6] immunostaining. Arch Pathol Lab Med 2003;127:694–700.

56. Vanderwalde A., Spetzler D., Xiao N. et al. Microsatellite instability status determinated by next-generation sequencing and compared with PD-L1 and tumor mutational burden in 11,348 patients. Cancer Med 2018;7:746–56. DOI: 10.1002/cam4.1372.

57. Hause R.J., Pritchard C.C., Shendure J. et al. Classification and characterization of microsatellite instability across 18 cancer types. Nat Med 2016;22:1342–50. DOI: 10.1038/nm.4191.

58. Zehir A.R., Benayed R.H., Shah A. et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med 2017;23(6):703–13. DOI: 10.1038/nm.4333.

59. Kim S.H., Ahn B.K., Nam Y.S. et al. Microsatellite instability is associated with the clinicopathologic features of gastric cancer in sporadic gastric cancer patients. J Gastric Cancer 2010;10(4):149–54. DOI: 10.5230/jgc.2010.10.4.149.

60. Lin J.T., Wu M.S., Shun C.T. et al. Microsatellite instability in gastric carcinoma

61. with special references to histopathology and cancer stages. Eur J Cancer 1995;31A: 1879–82.

62. Choi Y.Y., Bae J.M., An J.Y. et al. Is microsatellite instability a prognostic marker in gastric cancer? A systematic review with meta-analysis. J Surg Oncol 2014;1109(2):129–35. DOI: 10.1002/jso.23618.

63. Kim S.Y., Choi Y.Y., An J.Y. et al. The benefit of microsatellite instability is attenuated by chemotherapy in stage II and stage III gastric cancer: results from a large cohort with subgroup analyses. Int J Cancer 2015;137(4):819–25. DOI: 10.1002/ijc.29449.

64. Mathiak M., Warneke V.S., Behrens H.M. et al. Clinicopathologic characteristics of microsatellite instable gastric carcinomas revisited: urgent need for standardization. Appl Immunohistochem Mol Morphol 2017;25:12–24. DOI: 10.1097/pai.0000000000000264.

65. Normanno N., Rachiglio A.M., Lambiase M. et al. Heterogeneity of KRAS, NRAS, BRAF and PIK3CA mutations inmetastatic colorectal cancer and potential effects on therapy in the CAPRI GOIM trial. Ann Oncol 2015;26(8):1710–14. DOI: org/10.1093/annonc/mdv176.

66. Mukohara T. PI3K mutations in breast cancer: prognostic and therapeutic implications. Breast Cancer 2015;7:111–23. DOI: 10.2147/BCTT.S60696.

67. Nakashima H., Honda M., Inoue H. et al. Microsatellite instability in multiple gastric cancers. Int J Cancer 1995;64: 239–42. DOI: 10.1002/ijc.2910640405.

68. Kim J.Y., Shin N.R., Kim A. et al. Microsatellite instability status in gastric cancer: a reappraisal of its clinical significance and relationship with mucin phenotypes. Korean J Pathol 2013;47:28–35. DOI: 10.4132/KoreanJPathol.2013.47.1.28.

69. Nakajima T., Akiyama Y., Shiraishi J. et al. Age-related hypermethylation of the hMLH1 promoter in gastric cancers. Int J Cancer 2001;94(2):208–11. DOI: 10.1002/ijc.1454.

70. Llosa N.J., Cruise M., Tam A. et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov 2015;5(1):43–51. DOI: 10.1158/2159-8290.cd-14-0863.

71. Ma C., Patel K., Singhi A.D. et al. Programmed death-ligand 1 expression is common in gastric cancer associated with Epstein–Barr virus or microsatellite instability. Am J Surg Pathol 2016;40:1496–506. DOI: 10.1097/pas.0000000000000698.

72. Kelderman S., Schumacher T.N., Kvistborg P. Mismatch repair-deficient cancers are targets for anti-PD-1 therapy. Cancer Cell 2015;28(1):11–3. DOI: 10.1016/j.ccell.2015.06.0012.

73. Cunningham D., Allum W.H., Stenning S.P. et al. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med 2006;355(1):11–20. DOI: 10.1056/nejmoa055531.

74. Miyoshi E., Haruma K., Hiyama T. et al. Microsatellite instability is a genetic marker for the development of multiple gastric cancers. Int J Cancer 2001;95(6): 350–3. DOI: 10.1002/1097-0215(20011120)95:6<350::aid-ijc1061>3.0.co;2-a.

75. Ratti M., Lampis A., Jens C. et al. Microsatellite instability in gastric cancer: molecular bases, clinical perspectives, and new treatment approaches. Cell Mol Life Sci 2018;75(22):4151–62.


Review

For citations:


Rotin D.L., Paklina O.V., Tin’kova I.O., Grekov D.N. MICROSATELLITE INSTABILITY AND GASTRIC CARCINOMA. REVIEW OF THELITERATURE. Russian Journal of Biotherapy. 2019;18(4):17-24. (In Russ.) https://doi.org/10.17650/1726-9784-2019-18-4-17-24

Views: 523


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1726-9784 (Print)
ISSN 1726-9792 (Online)