Preview

DOPAMINERGIC SYSTEM: STRESS, DEPRESSION AND CANCER (PART 2)

https://doi.org/10.17650/1726-9784-2019-18-4-25-33

Abstract

In today’s world, we are constantly exposed to stress. At the same time, if acute stress can have a positive effect on the body, constant stress usually harms health, leading to serious diseases, including cancer, which is considered to be age-related disease. It is also known that stress can significantly deteriorate the efficacy of chemotherapies and anti-tumour immune response, promote tumor growth and metastasis spreading. Meanwhile dopamin known to be antiaging and antistress agent is able to inhibit tumourgenesis. Therefore the role of Central neuronal processes involving the dopaminergic system in the mechanisms of malignant growth control is discussed in the present review.

About the Authors

O. A. Bocharova
N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation
Russian Federation
24 Kashirskoye Shosse, Moscow 115478, Russia


E. V. Bocharov
N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation
Russian Federation
24 Kashirskoye Shosse, Moscow 115478, Russia


V. G. Kucheryanu
Institute of general pathology and pathophysiology
Russian Federation
8 Baltiyskaya St., Moscow 125315, Russia


R. V. Karpova
N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation
Russian Federation
24 Kashirskoye Shosse, Moscow 115478, Russia


A. A. Vershinskaya
N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation
Russian Federation

24 Kashirskoye Shosse, Moscow 115478, Russia



References

1. Borcherding D.C., Tong W., Hugo E.R. et al. Expression and therapeutic targeting of dopamine receptor-1 (D1R) in breast cancer. Oncogene 2016;35(24):3103–13. DOI: 10.1038/onc.2015.369.

2. Eisenhofer G., Aneman A., Friberg P. et al. Substantial production of dopamine in the human gastrointestinal tract. J Clin Endocrinol Metab 1997;82(11):3864–71. DOI: 10.1210/jcem.82.11.4339.

3. Dolma S., Selvadurai H.J., Lan X. et al. Inhibition of dopamine receptor D4 impedes autophagic flux, proliferation, and survival of glioblastoma stem cells. Cancer Cell 2016;29(6):859–73. DOI: 10.1016/j.ccell.2016.05.002.

4. Kopin I.J. Catecholamine metabolism: basic aspects and clinical significance. Pharmacol Rev 1985;37(4):333–64.

5. Watanabe Y., Nakayama T., Nagakubo D. et al. Dopamine selectively induces migration and homing of naive CD8+ T cells via dopamine receptor D3. J Immunol 2006;176(2):848–56. DOI: 10.4049/jimmunol.176.2.848.

6. Mezey E., Eisenhofer G., Harta G. et al. A novel nonneuronal catecholaminergic system: exocrine pancreas synthesizes and releases dopamine. Proc Natl Acad Sci USA 1996;93(19):10377–82. DOI: 10.1073/pnas.93.19.10377.

7. Sarkar C., Basu B., Chakroborty D. et al. The immunoregulatory role of dopamine: an update. Brain Behave Immun 2010;24(4):525–8. DOI: 10.1016/j.bbi.2009.10.015.

8. Mohammad-Zadeh L.F., Moses L., Gwaltney-Brant S.M. Serotonin: a review. J Vet Pharmacol Ther 2008;31(3):187–99. DOI: 10.1111/j.1365-2885.2008.00944.x.

9. Toth B., Vecsernyes M., Zelles T. et al. Role of periferal and brain-derived dopamine(DA) in immune regulation. Adv Neuroimm Biology 2012;3:111–55.

10. Beaulieu J.M., Gainetdinov R.R. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 2011;63(1):182–217. DOI: 10.1124/pr.110.002642.

11. Tsao C.W., Lin Y.S., Cheng J.T. Effect of dopamine on immune cell proliferation in mice. Life Sci 1997;61(24):361–71. DOI: 10.1016/s0024-3205(97)00962-4.

12. Abdel-Hamid N.M., Shehata D.E., Abdel-Ghany A.A. et al. Serum serotonin as unexpected potential marker for staging of experimental hepatocellular carcinoma. Biomed Pharmacother 2016;83:407–11. DOI: 10.1016/j.biopha.2016.07.005.

13. Basu S., Dasgupta P. Dopamine, a neurotransmitter, influences the immune system. J Neuroimmunol 2000;102(2):113–24. DOI: 10.1016/s0165-5728(99)00176-9.

14. Chakroborty D., Sarkar C., Basu B. et al. Catecholamines regulate tumor angiogenesis. Cancer Res 2009;69(9):3727–30. DOI: 10.1158/0008-5472.CAN-08-4289.

15. Shen Y., Hebert G., Su Y. et al. In mice, production of plasma IL-1 and IL-6 in response to MPTP is related to behavioral lateralization. Brain Res 2005;1045(1–2):31–7. DOI: 10.1016/j.brainres.2005.03.009.

16. Moreno-Smith M., Lu C., Shahzad M.M. et al. Dopamine blocks stress-mediated ovarian carcinoma growth. Clin Cancer Res 2011;17(11):3649–59. DOI: 10.1158/1078-0432.CCR-10-2441.

17. Pacheco-Lopes G., Niemi M.B., Kou W. et al. Central catecholamine depletion inhibits peripheral lymphocyte responsiveness in spleen and blood. J Neurochem 2003;86(4):1024–31. DOI: 10.1046/J.1471-4159.2003.01914.X.

18. Nocito A., Dahm F., Jochum W. et al. Serotonin regulates macrophagemediated angiogenesis in a mouse model of colon cancer allografts. Cancer Res 2008;68(13):5152–8. DOI: 10.1158/0008-5472.CAN-08-0202.

19. Fiszer U. Selected aspects of immunological disorders in Parkinsons disease. Neurol Neurochir Pol 2004; 38(Suppl. 1):63–6.

20. Magnini F., Sabbatini M., Capacchietti M. et al. T-cell subpopulations express a different pattern of dopaminergic markers in intra- and extra-thymic compartments. J Biol Regul Homeost Agents 2013;27(2):463–75.

21. Kryzhanovskiy G.N., Akmaev I.G., Magaeva S.V. et al. Neuroimmuneendocrine interactions in health and disease. Moscow: Medicinskaya kniga, 2010. 283 p. (In Russ.)

22. Da Prada M., Picotti G.B. Content and subcellular localization of catecholamines and 5-hydroxytryptamine in human and animal blood platelets: monoamine distribution between platelets and plasma. Br J Pharmacol 1979;65:653–62.

23. Teunis M.A., Heijnen C.J., Cools A.R., Kavelaars A. Reduced splenic natural killer cell activity in rats with a hyperreactive dopaminergic system. Psychoneuroendocrinology 2004;29(8):1058–64. DOI: 10.1016/j.psyneuen.2003.09.007.

24. Eisenhofer G., Coughtrie M.W., Goldstein D.S. Dopamine sulphate: an enigma resolved. Clin Exp Pharmacol Physiol 1999;26:41–53.

25. Kavelaars A., Cobelens P.M., Teunis M.A., Heijnen C.J. Changes in innate and acquired immune responses in mice with targeted deletion of the dopamine transporter gene. J Neuroimmunol 2005;161(1–2):162–8. DOI: 10.1016/j.jneuroim.2005.01.004.

26. Torres G.E., Gainetdinov R.R., Caron M.G. Plasma membrane monoamine transporters: structure, regulation and function. Nat Rev Neurosci 2003;4:13–25. DOI: 10.1038/nrn1008.

27. Won S.J., Chuang Y.C., Huang W.T. et al. Suppression of natural killer cell activity in mouse spleen lymphocytes by several dopamine receptor antagonists. Experientia 1995;51(4):343–8. DOI: 10.1007/bf01928892.

28. Frankhauser P., Grimmer Y., Bugert P. et al. Characterization of the neuronal dopamine transporter DAT in human blood platelets. Neurosci Lett 2006;399(3):197–201. DOI: 10.1016/j.neulet.2006.01.062.

29. Alperina E.L, Idova G.V., Devoino L.V. The role of the pituitary in the modulating effect on the immune response of dopaminergic and serotonergic systems. Rossiyskiy fiziologicheskiy zhurnal im. I.M. Sechenova = Russian Journal of Physiology 1985;11:1428–31. (In Russ.)

30. Nebigil C.G., Launay J.M., Hickel P. et al. 5-hydroxytryptamine 2B receptor regulates cell-cycle progression: crosstalk with tyrosine kinase pathways. Proc Natl Acad Sci USA 2000;97(6):2591–6. DOI: 10.1073/pnas.050282397.

31. Devoino L.V., Idova G.V., Alperina E.L. et al. Neurotransmitter systems of the brain in the immune response modulating (dopamine, serotonin, GABA. Neyroimmunologiya = Neuroimmunology 2005;3(1):11–8. (In Russ.)

32. Ni W., Watts S.W. 5-hydroxytryptamine in the cardiovascular system: focus on the serotonin transporter (SERT). Clin Exp Pharmacol Physiol 2006;33(7):575–83. DOI: 10.1111/j.1440-1681.2006.04410.x.

33. Alperina E.L, Idova G.V. The central nature of neurotransmitter systems interaction in immunomodulation. Fiziologicheskiy zhurnal SSSR im. I.M. Sechenova = Russian Journal of Physiology 1990;76(4):453–8. (In Russ.)

34. Da Prada M., Pletscher A. Differential uptake of biogenic amines by isolated 5-hydroxytryptamine organelles of blood platelets. Life Sci 1969;8:65–72.

35. Devoino L., Alperina E., Idova G. Dopaminergic stimulation of the immune reaction: interaction of serotoninergic and dopaminergic systems in neuroimmunomodulation. Int J Neurosci 1988;40(3–4):271–88. DOI: 10.3109/00207458808990716.

36. Marcus A.J., Safier L.B. Thromboregulation: multicellular modulation of platelet reactivity in hemostasis and thrombosis. FASEB J 1993;7(6):516–22. DOI: 10.1096/fasebj.7.6.8472890.

37. Alpini G., Invernizzi P., Gaudio E. et al. Serotonin metabolism is dysregulated in cholangiocarcinoma, which has implications for tumor growth. Cancer Res 2008;68(22):9184–93. DOI: 10.1158/0008-5472.CAN-08-2133.

38. Pinedo H.M., Verheul H.M., D’Amato R.J., Folkman J. Involvement of platelets in tumour angiogenesis? Lancet 1998;352:1775–7. DOI: 10.1016/s0140-6736(98)05095-8.

39. Cattaneo M.G., Palazzi E., Bondiolott G., Vicentin L.M. 5-HT1D receptor type is involved in stimulation of cell proliferation by serotonin in human small cell lung carcinoma. Eur J Pharmacol 1994;268(3):425–30. DOI: 10.1016/0922-4106(94)90068-X.

40. Italiano A., Ortholan C., Dassonville O. et al. Head and neck squamous cell carcinoma in patients aged > or = 80 years: patterns of care and survival. Cancer 2008;113(11):3160–8. DOI: 10.1002/cncr.23931.

41. Dizeyi N., Bjartell A., Hedlund P. et al. Expression of serotonin receptors 2B and 4 in human prostate cancer tissue and effects of their antagonists on prostate cancer cell lines. Eur Urol 2005;47(6):895–900. DOI: 10.1016/j.eururo.2005.02.006.

42. Meredith E.J., Holder M.J., Rosén A. et al. Dopamine targets cycling B cells independent of receptors/transporter for oxidative attack: Implications for non-Hodgkin’s lymphoma. Proc Natl Acad Sci USA 2006;103(36):13485–90. DOI: 10.1073/pnas.0605993103.

43. Drozdov I., Kidd M., Gustafsson B.I. et al. Autoregulatory effects of serotonin on proliferation and signaling pathways in lung and small intestine neuroendocrine tumor cell lines. Cancer 2009;115(21):4934–45. DOI: 10.1002/cncr.24533.

44. Chakroborty D., Chowdhury U.R., Sarkar C. et al. Dopamine regulates endothelial progenitor cell mobilization from mouse bone marrow in tumor vascularization. J Clin Invest 2008;118(4):1380–9. DOI: 10.1172/JCI33125.

45. Liang C., Chen W., Zhi X. et al. Serotoni n promotes the proliferation of serumdeprived hepatocellular carcinoma cells via upregulation of FOXO3a. Mol Cancer 2013;12:14. DOI: 10.1186/1476-4598-12-14.

46. Basu S., Sarkar C., Chakroborty D. et al. Ablation of peripheral dopaminergic nerves stimulates malignant tumor growth by inducing vascular permeability factor/vascular endothelial growth factor-mediated angiogenesis. Cancer Res 2004;64(16):5551–5. DOI: 10.1158/0008-5472.CAN-04-1600.

47. Pirozhok I., Meye A., Hakenberg O.W. et al. Serotonin and melatonin do not play a prominent role in the growth of prostate cancer cell lines. Urol Int 2010;84(4):452–60. DOI: 10.1159/000296296.

48. Sarkar C., Chakroborty D., Mitra R.B. et al. Dopamine in vivo inhibits VEGF-induced phosphorylation of VEGFR-2, MAPK, and focal adhesion kinase in endothelial cells. Am J Physiol Heart Circ Physiol 2004;287(4):1554–60. DOI: 10.1152/ajpheart.00272.2004.

49. Siddiqui E.J., Shabbir M.A., Mikhailidis D.P. et al. The effect of serotonin and serotonin antagonists on bladder cancer cell proliferation. BJU Int 2006;97(3):634–9. DOI: 10.1111/j.1464-410X.2006.06056.x.

50. Asada M., Ebihara S., Numachi Y. et al. Reduced tumor growth in a mouse model of schizophrenia, lacking the dopamine transporter. Int J Cancer 2008;123(3):511–8. DOI: 10.1002/ijc.23562.

51. Siddiqui E.J., Shabbir M.A., Mikhailidis D.P. et al. The role of serotonin (5-hydroxytryptamine1A and 1B) receptors in prostate cancer cell proliferation. J Urol 2006;176(4):1648–53. DOI: 10.1016/j.juro.2006.06.087.

52. Teunis M.A., Kavelaars A., Voest E. et al. Reduced tumor growth, experimental metastasis formation, and angiogenesis in rats with a hyperreactive dopaminergic system. FASEB J 2002;16(11):1465–7. DOI: 10.1096/fj.02-0145fje.

53. Soll C., Riener M.O., Oberkofler C.E. et al. Expression of serotonin receptors in human hepatocellular cancer. Clin Cancer Res 2012;18(21):5902–10. DOI: 10.1158/1078-0432.CCR-11-1813.

54. Basu S., Nagy J.A., Pal S. et al. The neurotransmitter dopamine inhibits angiogenesis induced by vascular permeability factor/vascular endothelial growth factor. Nat Med 2001;7(5):569–74. DOI: 10.1038/87895.

55. Sonier B., Arseneault M., Lavigne C. et al. The 5-HT2A serotoninergic receptor is expressed in the MCF-7 human breast cancer cell line and reveals a mitogenic effect of serotonin. Biochem Biophys Res Commun 2006;343(4):1053–99. DOI: 10.1016/j.bbrc.2006.03.080.

56. Chakroborty D., Sarkar C., Mitra R.B. et al. Depleted dopamine in gastric cancer tissues: dopamine treatment retards growth of gastric cancer by inhibiting angiogenesis. Clin Cancer Res 2004;10(13):4349–56. DOI: 10.1158/1078-0432.CCR-04-0059.

57. Heinrich E., Trojan L., Friedrich D. et al. Neuroendocrine tumor cells in prostate cancer: evaluation of the neurosecretory products serotonin, bombesin, and gastrin – impact on angiogenesis and clinical follow-up. Prostate 2011;71(16):1752–8. DOI: 10.1002/pros.21392.

58. Moreno-Smith M., Lee S.J., Lu C. et al. Biologic effects of dopamine on tumor vasculature in ovarian carcinoma. Neoplasia 2013;15(5):502–10.

59. Chevalier S., Defoy I., Lacoste J. et al. Vascular endothelial growth factor and signaling in the prostate: more than angiogenesis. Mol Cell Endocrinol 2002;189(12):169–79. DOI: 10.1016/s0303-7207(01)00728-6.

60. Sarkar C., Chakroborty D., Chowdhury U.R. et al. Dopamine increases the efficacy of anticancer drugs in breast and colon cancer preclinical models. Clin Cancer Res 2008;14(8):2502–10. DOI: 10.1158/1078-0432.CCR-07-1778.

61. Kopparapu P.K., Boorjian S.A., Robinson B.D. et al. Expression of cyclin D1 and its association with disease characteristics in bladder cancer. Anticancer Res 2013;33(12):5235–42.

62. Jain R.K. Normalization of tumor vasculature: an emerging concept in аntiangiogenic therapy. Science 2005;307(5706):58–62. DOI: 10.1126/science.1104819.

63. Chiechi A., Novello C., Magagnoli G. et al. Elevated TNFR1 and serotonin in bone metastasis are correlated with poor survival following bone metastasis diagnosis for both carcinoma and sarcoma primary tumors. Clin Cancer Res 2013;19(9):2473–85. DOI: 10.1158/1078-0432.CCR-12-3416.

64. Basu S., Dasgupta P.S. Decreased dopamine receptor expression and its second-messenger AMP in malignant human colon tissue. Dig Dis Sci 1999;44(5):916–21. DOI: 10.1023/a:1026644110737.

65. Peters M.A., Walenkamp A.M., Kema I.P. et al. Dopamine and serotonin regulate tumor behavior by affecting angiogenesis. Drug Resist Updat 2014;17(4–6):96–104. DOI: 10.1016/j.drup.2014.09.001.

66. Wick M.M. The chemotherapy of malignant melanoma. J Invest Dermatol 1983;80(Suppl. 1):61–2. DOI: 10.1038/jid.1983.16.

67. Ganguly S., Basu B., Shome S. et al. Dopamine, by acting through it`s D2 receptor, inhibits insulin-like growth factor-I(IGF-I)-induced gastric cancer cell proliferation via up-regulation of Krüppel-like factor 4 through downregulation of IGF-IR and AKT phosphorylation. Am J Pathol 2010;177(6): 2701–7. DOI: 10.2353/ajpath.2010.100617.

68. Senogles S.E. D2 dopamine receptor mediated antiproliferation in a small cell lung cancer cell line, NCI-H69. Anticancer Drugs 2007;18(7):801–17. DOI: 10.1097/CAD.0b013e3280b10d36.

69. Ishibashi M., Fujisawa M., Furue H. et al. Expression of DRD2 is increased in human pancreatic ductal adenocarcinoma and inhibitors slow tumor growth in mice. Gastroenterology 2016;151(6):1218–34. DOI: 10.1053/j.gastro.2016.08.040.

70. Jandaghi P., Najafabadi H.S., Bauer A.S. et al. Expression of DRD2 is increased in human pancreatic ductal adenocarcinoma and inhibitors slow tumor growth in mice. Gastroenterology 2016;5085(16):34982–4.

71. Peverelli E., Giardino E., Treppiedi D. Dopamine receptor type 2 (DRD2) inhibits migration and invasion of human tumorous pituitary cells through ROCK-mediated cofilin inactivation. Cancer Lett 2016;381(2):279–86. DOI: 10.1016/j.canlet.2016.08.005.

72. Huang H., Wu K., Ma J. et al. Dopamine D2 receptor suppresses gastric cancer cell invasion and migration via inhibition of EGFR/AKT/MMP-13 pathway. Int Immunopharmacol 2016;39:113–20. DOI: 10.1016/j.intimp.2016.07.002.

73. Basu S., Dasgupta P.S. Alteration of dopamine D2 receptors in human malignant stomach tissue. Dig Dis Sci 1997;42(6):1260–4.

74. Borcherding D.C., Tong W., Hugo E.R. et al. Expression and therapeutic targeting of dopamine receptor-1 (D1R) in breast cancer. Oncogene 2016;35(24):3103–13. DOI: 10.1038/onc.2015.369.

75. Dolma S., Selvadurai H.J., Lan X. et al. Inhibition of dopamine receptor D4 impedes autophagic flux, proliferation, and survival of glioblastoma stem cells. Cancer Cell 2016;29(6):859–73. DOI: 10.1016/j.ccell.2016.05.002.

76. Watanabe Y., Nakayama T., Nagakubo D. et al. Dopamine selectively induces migration and homing of naive CD8+ T cells via dopamine receptor D3. J Immunol 2006;176(2):848–56. DOI: 10.4049/jimmunol.176.2.848.

77. Sarkar C., Basu B., Chakroborty D. et al. The immunoregulatory role of dopamine: an update. Brain Behave Immun 2010;24(4):525–8. DOI: 10.1016/j.bbi.2009.10.015.

78. Toth B., Vecsernyes M., Zelles T. et al. Role of periferal and brain-derived dopamine(DA) in immune regulation. Adv Neuroimm Biology 2012;3:111–55.

79. Tsao C.W., Lin Y.S., Cheng J.T. Effect of dopamine on immune cell proliferation in mice. Life Sci 1997;61(24):361–71. DOI: 10.1016/s0024-3205(97)00962-4.

80. Basu S., Dasgupta P. Dopamine, a neurotransmitter, influences the immune system. J Neuroimmunol 2000;102(2):113–24. DOI: 10.1016/s0165-5728(99)00176-9.

81. Shen Y., Hebert G., Su Y. et al. In mice, production of plasma IL-1 and IL-6 in response to MPTP is related to behavioral lateralization. Brain Res 2005;1045(1–2):31–7. DOI: 10.1016/j.brainres.2005.03.009.

82. Pacheco-Lopes G., Niemi M.B., Kou W. et al. Central catecholamine depletion inhibits peripheral lymphocyte responsiveness in spleen and blood. J Neurochem 2003;86(4):1024–31. DOI: 10.1046/J.1471-4159.2003.01914.X.

83. Fiszer U. Selected aspects of immunological disorders in Parkinsons disease. Neurol Neurochir Pol 2004; 38(Suppl. 1):63–6.

84. Kryzhanovskiy G.N., Akmaev I.G., Magaeva S.V. et al. Neuroimmuneendocrine interactions in health and disease. Moscow: Medicinskaya kniga, 2010. 283 p. (In Russ.)

85. Teunis M.A., Heijnen C.J., Cools A.R., Kavelaars A. Reduced splenic natural killer cell activity in rats with a hyperreactive dopaminergic system. Psychoneuroendocrinology 2004;29(8):1058–64. DOI: 10.1016/j.psyneuen.2003.09.007.

86. Kavelaars A., Cobelens P.M., Teunis M.A., Heijnen C.J. Changes in innate and acquired immune responses in mice with targeted deletion of the dopamine transporter gene. J Neuroimmunol 2005;161(1–2):162–8. DOI: 10.1016/j.jneuroim.2005.01.004.

87. Won S.J., Chuang Y.C., Huang W.T. et al. Suppression of natural killer cell activity in mouse spleen lymphocytes by several dopamine receptor antagonists. Experientia 1995;51(4):343–8. DOI: 10.1007/bf01928892.

88. Alperina E.L, Idova G.V., Devoino L.V. The role of the pituitary in the modulating effect on the immune response of dopaminergic and serotonergic systems. Rossiyskiy fiziologicheskiy zhurnal im. I.M. Sechenova = Russian Journal of Physiology 1985;11:1428–31. (In Russ.)

89. Devoino L.V., Idova G.V., Alperina E.L. et al. Neurotransmitter systems of the brain in the immune response modulating (dopamine, serotonin, GABA. Neyroimmunologiya = Neuroimmunology 2005;3(1):11–8. (In Russ.)

90. Alperina E.L, Idova G.V. The central nature of neurotransmitter systems interaction in immunomodulation. Fiziologicheskiy zhurnal SSSR im. I.M. Sechenova = Russian Journal of Physiology 1990;76(4):453–8. (In Russ.)

91. Devoino L., Alperina E., Idova G. Dopaminergic stimulation of the immune reaction: interaction of serotoninergic and dopaminergic systems in neuroimmunomodulation. Int J Neurosci 1988;40(3–4):271–88. DOI: 10.3109/00207458808990716.

92. Alpini G., Invernizzi P., Gaudio E. et al. Serotonin metabolism is dysregulated in cholangiocarcinoma, which has implications for tumor growth. Cancer Res 2008;68(22):9184–93. DOI: 10.1158/0008-5472.CAN-08-2133.

93. Cattaneo M.G., Palazzi E., Bondiolott G., Vicentin L.M. 5-HT1D receptor type is involved in stimulation of cell proliferation by serotonin in human small cell lung carcinoma. Eur J Pharmacol 1994;268(3):425–30. DOI: 10.1016/0922-4106(94)90068-X.

94. Dizeyi N., Bjartell A., Hedlund P. et al. Expression of serotonin receptors 2B and 4 in human prostate cancer tissue and effects of their antagonists on prostate cancer cell lines. Eur Urol 2005;47(6):895–900. DOI: 10.1016/j.eururo.2005.02.006.

95. Drozdov I., Kidd M., Gustafsson B.I. et al. Autoregulatory effects of serotonin on proliferation and signaling pathways in lung and small intestine neuroendocrine tumor cell lines. Cancer 2009;115(21):4934–45. DOI: 10.1002/cncr.24533.

96. Liang C., Chen W., Zhi X. et al. Serotoni n promotes the proliferation of serumdeprived hepatocellular carcinoma cells via upregulation of FOXO3a. Mol Cancer 2013;12:14. DOI: 10.1186/1476-4598-12-14.

97. Pirozhok I., Meye A., Hakenberg O.W. et al. Serotonin and melatonin do not play a prominent role in the growth of prostate cancer cell lines. Urol Int 2010;84(4):452–60. DOI: 10.1159/000296296.

98. Siddiqui E.J., Shabbir M.A., Mikhailidis D.P. et al. The effect of serotonin and serotonin antagonists on bladder cancer cell proliferation. BJU Int 2006;97(3):634–9. DOI: 10.1111/j.1464-410X.2006.06056.x.

99. Siddiqui E.J., Shabbir M.A., Mikhailidis D.P. et al. The role of serotonin (5-hydroxytryptamine1A and 1B) receptors in prostate cancer cell proliferation. J Urol 2006;176(4):1648–53. DOI: 10.1016/j.juro.2006.06.087.

100. Soll C., Riener M.O., Oberkofler C.E. et al. Expression of serotonin receptors in human hepatocellular cancer. Clin Cancer Res 2012;18(21):5902–10. DOI: 10.1158/1078-0432.CCR-11-1813.

101. Sonier B., Arseneault M., Lavigne C. et al. The 5-HT2A serotoninergic receptor is expressed in the MCF-7 human breast cancer cell line and reveals a mitogenic effect of serotonin. Biochem Biophys Res Commun 2006;343(4):1053–99. DOI: 10.1016/j.bbrc.2006.03.080.

102. Heinrich E., Trojan L., Friedrich D. et al. Neuroendocrine tumor cells in prostate cancer: evaluation of the neurosecretory products serotonin, bombesin, and gastrin – impact on angiogenesis and clinical follow-up. Prostate 2011;71(16):1752–8. DOI: 10.1002/pros.21392.

103. Chevalier S., Defoy I., Lacoste J. et al. Vascular endothelial growth factor and signaling in the prostate: more than angiogenesis. Mol Cell Endocrinol 2002;189(12):169–79. DOI: 10.1016/s0303-7207(01)00728-6.

104. Kopparapu P.K., Boorjian S.A., Robinson B.D. et al. Expression of cyclin D1 and its association with disease characteristics in bladder cancer. Anticancer Res 2013;33(12):5235–42.

105. Chiechi A., Novello C., Magagnoli G. et al. Elevated TNFR1 and serotonin in bone metastasis are correlated with poor survival following bone metastasis diagnosis for both carcinoma and sarcoma primary tumors. Clin Cancer Res 2013;19(9):2473–85. DOI: 10.1158/1078-0432.CCR-12-3416.

106. Peters M.A., Walenkamp A.M., Kema I.P. et al. Dopamine and serotonin regulate tumor behavior by affecting angiogenesis. Drug Resist Updat 2014;17(4–6):96–104. DOI: 10.1016/j.drup.2014.09.001.


Review

For citations:


Bocharova O.A., Bocharov E.V., Kucheryanu V.G., Karpova R.V., Vershinskaya A.A. DOPAMINERGIC SYSTEM: STRESS, DEPRESSION AND CANCER (PART 2). Russian Journal of Biotherapy. 2019;18(4):25-33. (In Russ.) https://doi.org/10.17650/1726-9784-2019-18-4-25-33

Views: 649


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1726-9784 (Print)
ISSN 1726-9792 (Online)