Preview

Российский биотерапевтический журнал

Расширенный поиск

ИСПОЛЬЗОВАНИЕ БАКТЕРИЙ ДЛЯ ЛЕЧЕНИЯ ОНКОЛОГИЧЕСКИХ ЗАБОЛЕВАНИЙ (ОБЗОР )

https://doi.org/10.17650/1726-9784-2019-18-4-34-42

Аннотация

Бактериальные средства лечения злокачественных новообразований известны уже более ста лет, однако в клинике они нашли весьма ограниченное применение. В последнее десятилетие отмечается возрождение интереса к разработке средств биотерапии рака на основе бактерий, что связано с прогрессом в области генной инженерии и глубоким познанием механизмов инфекционного процесса и иммунитета. Целью настоящего обзора является рассмотрение современного состояния и перспектив разработки и применения препаратов на основе живых бактерий, предназначенных для лечения злокачественных опухолей. В обзоре представлены данные оценки на экспериментальных моделях противоопухолевого потенциала различных видов и штаммов бактерий; наиболее значимые результаты клинических испытаний бактериальных противоопухолевых средств; современные направления конструирования бактериальных штаммов как средств адресной доставки лекарственных субстанций в опухоли. Сделано заключение о том, что разработка бактериальных средств терапии рака является перспективным направлением экспериментальной онкологии.

Об авторах

И. В. Дармов
Филиал ФГБУ «48 Центральный научно-исследовательский институт» Минобороны России
Россия
Россия, 610000 Киров, Октябрьский проспект, 119


Я. А. Кибирев
Филиал ФГБУ «48 Центральный научно-исследовательский институт» Минобороны России
Россия
Россия, 610000 Киров, Октябрьский проспект, 119


И. В. Маракулин
Филиал ФГБУ «48 Центральный научно-исследовательский институт» Минобороны России
Россия
Россия, 610000 Киров, Октябрьский проспект, 119


С. Н. Янов
Филиал ФГБУ «48 Центральный научно-исследовательский институт» Минобороны России
Россия

Россия, 610000 Киров, Октябрьский проспект, 119



Список литературы

1. McCarthy E.F. The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop J 2006;26:154–8.

2. Redelman-Sidi G., Glickman M.S., Bochner B.H. The mechanism of action of BCG therapy for bladder cancer – a current perspective. Nat Rev Urol 2014;11(3):153–62. DOI: 10.1038/nrurol.2014.15.

3. Адамян P.T., Нерсесян A.K., Галстян A.M. Применение туляремийной живой вакцины в клинической онкологии. Вопросы онкологии 2004;50(1):68–74.

4. Андреева З.М., Храмова Н.И., Ершова Е.Б., Бархударян В.А. Патент RU 2027755 от 27.01.1995. Штамм бактерий Corynebacterium krestovnicova-troitskaya, используемый для приготовления иммуностимулятора.

5. Malmgren R.A., Flanigan С.С. Localization of vegetative form of Clostridium tetani in mouse tumors following intravenous spore administrations. Cancer Res 1955;15(7):473–8.

6. Mose J.R., Mose G. Oncolysis by Clostridia. I. Activity of Clostridium butyricum (M-55) and other nonpathogenic Clostridia against the Ehrlich carcinoma. Cancer Res 1964;24(2):212–6.

7. Mose J.R., Mose G. Onkolyseversuche mit apathogenen, anaeroben Sporenbildnern am Ehrlich-Tumor der Maus. Z Krebsforsch 1959;63:63–74.

8. Dang L.H., Bettegowda C., Huso D.L. et al. Combination bacteriolytic therapy for the treatment of experimental tumors. Proc Natl Acad Sci USA 2001;98(26):15155–60. DOI: 10.1073/pnas.251543698.

9. Li Z., Fallon J., Mandely J. et al. A genetically enhanced anaerobic bacterium for oncopathic therapy of pancreatic cancer. J Natl Cancer Inst 2008;100(19):1389–400. DOI: 10.1093/jnci/djn308.

10. Roberts N.J., Zhang L., Janku F. et al. Intratumoral injection of Clostridium novyi-NT spores induces antitumor responces. Sci Transl Med 2014;6(249):249ra111. DOI: 10.1126/scitranslmed.3008982.

11. Staedtke V., Bai R., Sun W. et al. Clostridium novyi-NT can cause regression of orthotopically implanted glioblastomas in rats. Oncotarget 2015;6(8):5536–46. DOI: 10.18632/oncotarget.3627.

12. Zhang L., Tome Y., Suetsugu A. et al. Determination of the optimal route of administration of Salmonella typhimurium Al-R to target breast cancer in nude mice. Anticancer Res 2012;32(7):2501–8.

13. Momiyama M., Zhao M., Kimura H. et al. Inhibition and eradication of human glioma with tumor-targeting Salmonella typhimurium in an orthotopic nude-mouse model. Cell Cycle 2012;11(3):628–32. DOI: 10.4161/cc.11.3.19116.

14. Miwa S., Yano S., Zhang Y. et al. Tumortargeting Salmonella typhimurium Al-R prevents experimental human breast cancer bone metastasis in nude mice. Oncotarget 2014;5(16):7119–25. DOI: 10.18632/oncotarget.2226.

15. Hiroshima Y., Zhang Y., Murakami T. et al. Efficacy of tumor-targeting Salmonella typhimurium Al-R in combination with anti-angiogenesis therapy on a pancreatic cancer patientderived orthotopic xenograft (PDOX) and cell line mouse models. Oncotarget 2014;5(23):12346–57. DOI: 10.18632/oncotarget.2641.

16. Matsumoto Y., Miwa S., Zhang Y. et al. Intraperitoneal administration of tumortargeting Salmonella typhimurium Al-R inhibits disseminated human ovarian cancer and extends survival in nude mice. Oncotarget 2015;6(13):11369–77. DOI: 10.18632/oncotarget.3607.

17. Frahm M., Feigner S., Kocijancic D. et al. Efficiency of conditionally attenuated Salmonella enterica serovar Typhimurium in bacterium-mediated tumor therapy. MBio 2015;6(2):254–15. DOI: 10.1128/mBio.00254–15.

18. Lizotte P.H., Baird J.R., Stevens C.A. et al. Attenuated Listeria monocytogenes reprograms M2-polarized tumorassociated macrophages in ovarian cancer leading to iNOS-mediated tumor cell lysis. Oncoimmunology 2014;3:28926. DOI: 10.4161/onci.28926.

19. Keenan В.P., Saenger Y., Kafrouni M.I. et al. A Listeria vaccine and depletion of T-regulatory cells activate immunity against early stage pancreatic intraepithelial neoplasms and prolong survival of mice. Gastroenterology 2014;146(7):1784–94. DOI: 10.1053/j.gastro.2014.02.055.

20. Yazawa K., Fujimori M., Nakamura T. et al. Bifidobacterium longum as a delivery system for gene therapy of chemically induced rat mammary tumors. Breast Cancer Res Treat 2001;66(2):165–70. DOI:10.1023/a:1010644217648.

21. St Jean A.T., Swofford C.A., Panteli J.T. et al. Bacterial delivery of Staphylococcus aureus α-hemolysin causes regression and necrosis in murine tumors. Mol Ther 2014;22(7):1266–74. DOI: 10.1038/mt.2014.36.

22. Kocijancic D., Felgner S., Frahm M. et al. Therapy of solid tumors using probiotic Symbioflor-2: restraints and potential. Oncotarget 2016;7(16):22605–22. DOI: 10.18632/oncotarget.8027.

23. Chen C.С., Lin W.C., Kong M.S. et al. Oral inoculation of probiotics Lactobacillus acidophilus NCFM suppresses tumour growth both in segmental orthotopic colon cancer and extra-intestinal tissue. Br J Nutr 2012;107(11):1623–34. DOI: 10.1017/S0007114511004934.

24. Heap J.T., Ehsaan M., Cooksley C.M. et al. Integration of DNA into bacterial chromosomes from plasmids without a counter-selection marker. Nucleic Acids Res 2012;40(8):59. DOI: 10.1093/nar/gkr1321.

25. Groot A.J., Mengesha A., van der Wall E. et al. Functional antibodies produced by oncolytic clostridia. Biochem Biophys Res Commun 2007;364(4):985–9. DOI: 10.1016/j.bbrc.2007.10.126.

26. Wang S., Kong Q., Curtiss R. New technologies in developing recombinant attenuated Salmonella vaccine vectors. Microb Pathog 2013;58:17–28. DOI: 10.1016/j.micpath.2012.10.006.

27. Hoffman R.M., Zhao M. Methods for the development of tumor-targeting bacteria. Expert Opin Drug Discov 2014;9(7):741–50. DOI: 10.1517/17460441.2014.916270.

28. Hoffman R.M. Tumor-seeking Salmonella amino acid auxotrophs. Curr Opin Biotechnol 2011;22(6):917–23. DOI: 10.1016/j.copbio.2011.03.009.

29. Zhao M., Suetsugu A., Ma H. et al. Efficacy against lung metastasis with a tumor-targeting mutant of Salmonella typhimurium in immunocompetent mice. Cell Cycle 2012;11(l):187–93. DOI: 10.4161/cc.11.1.18667.

30. Leschner S., Westphal K., Dietrich N. et al. Tumor invasion of Salmonella enterica serovar Typhimurium is accompanied by strong hemorrhage promoted by TNF-alpha. PLoS One 2009;4(8):6692. DOI: 10.1371/journal.pone.0006692.

31. Crull K., Bumann D., Weiss S. Influence of infection route and virulence factors on colonization of solid tumors by Salmonella enterica serovar Typhimurium. FEMS Immunol Med Microbiol 2011;62(1):75–83. DOI: 10.1111/j.1574-695X.2011.00790.x.

32. Stern C., Kasnitz N., Kocijancic D. et al. Induction of CD4(+) and CD8(+) antitumor effector T cell responses by bacteria mediated tumor therapy. Int J Cancer 2015;137(8):2019–28. DOI: 10.1002/ijc.29567.

33. Felgner S., Kocijancic D., Frahm M., Weiss S. Bacteria in cancer therapy: renaissance of an old concept. Int J Microbiol 2016;2016:8451728. DOI: 10.1155/2016/8451728.

34. Barbe S., Van Mellaert L., Anne J. The use of clostridial spores for cancer treatment. J Appl Microbiol 2006;101(3):571–8. DOI: 10.1111/j.1365-2672.2006.02886.x.

35. Carey R.W., Holland J.F., Whang H.Y. et al. Clostridial oncolysis in man. Eur J Cancer 1967;3(1):37–46. DOI: 10.1016/0014-2964(67)90060-6.

36. Lemmon M.J., van Zijl P., Fox M.E. et al. Anaerobic bacteria as a gene delivery system that is controlled by the tumor microenvironment. Gene Ther 1997;4(8):791–6. DOI: 10.1038/sj.gt.3300468.

37. Toso J.F., Gill V.J., Hwu P. et al. Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J Clin Oncol 2002;20(1):142–52. DOI: 10.1200/JCO.2002.20.1.142.

38. Nemunaitis J., Cunningham C., Senzer N. et al. Pilot trial of genetically modified, attenuated Salmonella expressing the E. coli cytosine deaminase gene in refractory cancer patients. Cancer Gene Ther 2003;10(10):737–44. DOI: 10.1038/sj.cgt.7700634.

39. Le D.T., Brockstedt D.G., Nir-Paz R. et al. A live-attenuated Listeria vaccine (ANZ-100) and a live-attenuated Listeria vaccine expressing mesothelin (CRS-207) for advanced cancers: phase I studies of safety and immune induction. Clin Cancer Res 2012;18(3):858–68. DOI: 10.1158/1078-0432.CCR-11-2121.

40. Le D.T., Wang-Gillam A., Picozzi V. et al. Safety and survival with GVAX pancreas prime and Listeria monocytogenes – expressing mesothelin (CRS-207) boost vaccines for metastatic pancreatic cancer. J Clin Oncol 2015;33(12):1325–33. DOI: 10.1200/JCO.2014.57.4244.

41. Van Mellaert L., Barbe S., Anne J. Clostridium spores as anti-tumour agents. Trends Microbiol 2006;14(4): 190–6. DOI: 10.1016/j.tim.2006.02.002.

42. Krick E.L., Sorenmo K.U., Rankin S.C. et al. Evaluation of Clostridium novyi-NT spores in dogs with naturally occurring tumors. Am J Vet Res 2012;73(1):112–8. DOI: 10.2460/ajvr.73.1.112.

43. Lee C.H., Wu C.L., Shiau A.L. Toll-like receptor 4 mediates an antitumor host response induced by Salmonella choleraesuis. Clin Cancer Res 2008;14(6):1905–12. DOI: 10.1158/1078-0432.CCR-07-2050.

44. Kaimala S., Mohamed Y.A., Nader N. et al. Salmonella-mediated tumor regression involves targeting of tumor myeloid suppressor cells causing a shift to Ml-like phenotype and reduction in suppressive capacity. Cancer Immunol Immunother 2014;63(6):587–99. DOI: 10.1007/s00262-014-1543-x.

45. Broadway К.M., Denson E.A., Jensen R.V., Scharf В.E. Rescuing chemotaxis of the anticancer agent Salmonella enterica serovar Typhimurium VNP20009. J Biotechnol 2015;211:117–20. DOI: 10.1016/j.jbiotec.2015.07.010.

46. Needham B.D., Carroll S.M., Giles D.K. et al. Modulating the innate immune response by combinatorial engineering of endotoxin. Proc Natl Acad Sci USA 2013;110(4):1464–9. DOI: 10.1073/pnas.1218080110.

47. Stewart M.К., Cummings L.A., Johnson M.L. et al. Regulation of phenotypic heterogeneity permits Salmonella evasion of the host caspase-1 inflammatory response. Proc Natl Acad Sci USA 2011;108(51):20742–7. DOI: 10.1073/pnas.1108963108.

48. Saitoh S., Akashi S., Yamada T. et al. Lipid A antagonist, lipid IVa, is distinct from lipid A in interaction with Toll-like receptor 4 (TLR4)-MD-2 and ligandinduced TLR4 oligomerization. Int Immunol 2004;16(7):961–9. DOI: 10.1093/intimm/dxh097.

49. Eom J. S., Seok Kim J., Im Jang J. et al. Enhancement of host immune responses by oral vaccination to Salmonella enterica serovar Typhimurium harboring both FliC and FljB flagella. PLoS One 2013;8(9):74850. DOI: 10.1371/journal.pone.0074850.

50. Curtiss R. 3rd, Wanda S.Y., Gunn В.M. et al. Salmonella enterica serovar Typhimurium strains with regulated delayed attenuation in vivo. Infect Immun 2009;77(3):1071–82. DOI: 10.1128/IAI.00693-08.

51. Kong W., Wanda S.Y., Zhang X. et al. Regulated programmed lysis of recombinant Salmonella in host tissues to release protective antigens and confer biological containment. Proc Natl Acad Sci USA 2008;105(27): 9361–6. DOI: 10.1073/pnas.0803801105.

52. Hiroshima Y., Zhang Y., Zhao M. et al. Tumor-targeting Salmonella typhimurium Al-R in combination with Trastuzumab eradicates HER-2-positive cervical cancer cells in patient-derived mouse models. PLoS One 2015;10(6):0120358. DOI: 10.1371/journal.pone.0120358.

53. Green L.K., Storey M.A., Williams E.M. et al. The flavin reductase MsuE is a novel nitroreductase that can efficiently activate two promising nextgeneration prodrugs for gene-directed enzyme prodrug therapy. Cancers 2013;5(3):985–97. DOI: 10.3390/cancers5030985.

54. Kubiak A.M., Minton N.P. The potential of clostridial spores as therapeutic delivery vehicles in tumour therapy. Res Microbiol 2015;166(4):244–54. DOI: 10.1016/j.resmic.2014.12.006.

55. Friedlos F., Lehouritis P., Ogilvie L. et al. Attenuated Salmonella targets prodrug activating enzyme carboxypeptidase G2 to mouse melanoma and human breast and colon carcinomas for effective suicide gene therapy. Clin Cancer Res 2008;14(13):4259–66. DOI: 10.1158/1078-0432.CCR-07-4800.

56. Swofford C.A., St Jean A.T., Panteli J.T. et al. Identification of Staphylococcus aureus α-hemolysin as a protein drug that is secreted by anticancer bacteria and rapidly kills cancer cells. Biotechnol Bioeng 2014;111(6):1233–45. DOI: 10.1002/bit.25184.

57. Barbe S., van Mellaert L., Theys J. et al. Secretory production of biologically active rat interleukin-2 by Clostridium acetobutylicum DSM792 as a tool for anti-tumor treatment. FEMS Microbiol Lett 2005;246(1):67–73. DOI: 10.1016/j.femsle.2005.03.037.

58. Tian Y., Guo B., Jia H. et al. Targeted therapy via oral administration of attenuated Salmonella expression plasmid-vectored Stat3-shRNA cures orthotopically transplanted mouse HCC. Cancer Gene Ther 2012;19(6):393–401. DOI: 10.1038/cgt.2012.12.

59. Blache C.A., Manuel E.R., Kaltcheva T.I. et al. Systemic delivery of Salmonella typhimurium transformed with IDO shRNA enhances intratumoral vector colonization and suppresses tumor growth. Cancer Res 2012;72(24):6447–56. DOI: 10.1158/0008-5472.CAN-12-0193.

60. Xu X., Hegazy W.A., Guo L. et al. Effective cancer vaccine platform based on attenuated Salmonella and a type III secretion system. Cancer Res 2014;74(21):6260–70. DOI: 10.1158/0008-5472.CAN-14-1169.

61. Swofford C.A., van Dessel N., Forbes N.S. Quorum-sensing Salmonella selectively trigger protein expression within tumors. Proc Natl Acad Sci USA 2015;112(11):3457–62. DOI: 10.1073/pnas.1414558112.

62. Leschner S., Deyneko I.V., Lienenklaus S. et al. Identification of tumor-specific Salmonella Typhimurium promoters and their regulatory logic. Nucleic Acids Res 2012;40(7):2984–94. DOI: 10.1093/nar/gkr1041.


Рецензия

Для цитирования:


Дармов И.В., Кибирев Я.А., Маракулин И.В., Янов С.Н. ИСПОЛЬЗОВАНИЕ БАКТЕРИЙ ДЛЯ ЛЕЧЕНИЯ ОНКОЛОГИЧЕСКИХ ЗАБОЛЕВАНИЙ (ОБЗОР ). Российский биотерапевтический журнал. 2019;18(4):34-42. https://doi.org/10.17650/1726-9784-2019-18-4-34-42

For citation:


Darmov I.V., Kibirev Ya.A., Marakulin I.V., Yanov S.N. USE OF BACTERIA IN CANCER THERAPY (REVIEW). Russian Journal of Biotherapy. 2019;18(4):34-42. (In Russ.) https://doi.org/10.17650/1726-9784-2019-18-4-34-42

Просмотров: 606


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1726-9784 (Print)
ISSN 1726-9792 (Online)