EXPERIMENTAL IMMUNOTHERAPY MODEL OF RETINOBLASTOMA
https://doi.org/10.17650/1726-9784-2019-18-4-57-64
Abstract
Introduction. The main reason for enucleation of the eye when attempting organ-preserving treatment are intraocular tumors that do not respond well to chemotherapy.
Purpose. The aim of the study was to find new effective and safe organ-preserving methods of treatment of intraocular refractory and recurrent retinoblastoma (RB).
Materials and methods. The study included female chinchilla rabbits. The cell line of human RB was intravitreally inserted into the right eye of each animal. The left eye was a control. After obtaining a stable intraocular growth of RB and prolongation of the growth of RB, human cytotoxic lymphocytes (CTL) were intravitreally injected into the affected and control eye K1 at a concentration of 1 × 106 in 0.1 ml suspension and K2 – 5 × 106 in 0.1 ml, respectively.
Results. Histological examination of the removed right eyes in animals confirmed the presence of nodal growth of malignant small-cell tumor on the border of the vascular and retinal membranes (epicenter in the choroid) on the posterior wall of the eye. There was scant lymphoid infiltration, without signs of therapeutic pathomorphosis. In the removed animal»s left eyes there is a preservation of histological structures of the eyeball, without dystrophic changes in the cells of the retina and vascular membranes. In the area of limb unit microcap lymphohistiocytic infiltration (with no elements of the tumor). In the choroid single scattered lymphocytes.
Conclusion. A short period of observation of the tumor did not allow conclusions about the effectiveness of CTL, but the concentrations of CTL used in the experiment did not lead to dystrophic changes in retinal cells and the choroid of the eye, which is an important factor in overcoming the toxicity of the proposed adoptive immunotherapy. At the next stage of the experiment, in our opinion, it is necessary to study in more detail the cytotoxic effect on healthy structures of the eye and the effectiveness of CTL in a larger number of affected rabbit eyes, using their different concentrations and multiplicity of administration.
Keywords
About the Authors
T. L. UshakovaRussian Federation
24 Kashirskoye Shosse, Moscow 115478, Russia;
2 Barricadnaya St., Moscow 123242, Russia
I. S. Dolgopolov
Russian Federation
24 Kashirskoye Shosse, Moscow 115478, Russia
Z. A. Sokolova
Russian Federation
24 Kashirskoye Shosse, Moscow 115478, Russia
G. Z. Chkadua
Russian Federation
24 Kashirskoye Shosse, Moscow 115478, Russia
N. S. Titov
Russian Federation
1 Ostrovityanova St., Moscow 117997, Russia
Yu. M. Bukreev
Russian Federation
24 Kashirskoye Shosse, Moscow 115478, Russia
Yu. A. Serov
Russian Federation
24 Kashirskoye Shosse, Moscow 115478, Russia
O. V. Gorovtsova
Russian Federation
24 Kashirskoye Shosse, Moscow 115478, Russia
D. A. Buletov
Russian Federation
24 Kashirskoye Shosse, Moscow 115478, Russia
N. A. Kozlov
Russian Federation
24 Kashirskoye Shosse, Moscow 115478, Russia
V. G. Polyakov
Russian Federation
24 Kashirskoye Shosse, Moscow 115478, Russia;
2 Barricadnaya St., Moscow 123242, Russia;
1 Ostrovityanova St., Moscow 117997, Russia
References
1. Shields C.L, Honavar S.G., Shields A.J. et al. Factors predictive of recurrence of retinal tumors, vitreous seeds, and subretinal seeds following chemoreduction for retinoblastoma. Arch Ophthalmol 2002;120(4):460−4. DOI: 10.1001/archopht.120.4.460.
2. Gündüz K., Günalp I., Yalçindağ N. et al. Causes of chemoreduction failure in retinoblastoma and analysis of associated factors leading to eventual treatment with external beam radiotherapy and enucleation. Ophthalmology 2004;111(10):1917−24. DOI: 10.1016/j.ophtha.2004.04.016.
3. Berry J.L, Bechtold M., Shah S. et al. Not all seeds are created equal: seed classification is predictive of outcomes in retinoblastoma. Ophthalmology 2017;124(12):1817–25. DOI: 10.1016/j.ophtha.2017.05.03.
4. Ghassemi F., Shields C.L. Intravitreal melphalan for refractory or recurrent vitreous seeding from retinoblastoma. Arch Ophthalmol 2012;130(10): 1268−71. DOI: 10.1001/archophthalmol.2012.1983.
5. Shields C.L., Manjandavida F.P., Arepalli S. et al. Intravitreal melphalan for persistent or recurrent retinoblastoma vitreous seeds: preliminary results. JAMA Ophthalmol 2014;132(3):319−25. DOI: 10.1001/jamaophthalmol.2013.7666.
6. Rao R., Honavar S.G., Sharma V., Reddy V.A.P. Intravitreal topotecan in the management of refractory and recurrent vitreous seeds in retinoblastoma. Br J Ophthalmol 2018;102(4):490−5. DOI: 10.1136/bjophthalmol-2017-310641.
7. Kiratli H., Koç İ., Varan A., Akyüz C. Intravitreal chemotherapy in the management of vitreous disease in retinoblastoma. Eur J Ophthalmol 2017;27(4):423–7. DOI: 10.5301/ejo.5000921.
8. Abramson D.H., Catalanotti F., Brodie S.E. et al. Intravitreal chemotherapy and laser for newly visible subretinal seeds in retinoblastoma. Ophthalmic Genet 2018;39(6):353–6. DOI: 10.1080/13816810.2018.1443343.
9. Abramson D.H., Ji X., Francis J.H. et al. Intravitreal chemotherapy in retinoblastoma: expanded use beyond intravitreal seeds. Br J Ophthalmol 2018;103(4):488‒93. DOI: 10.1136/bjophthalmol-2018-312037.
10. Kivelä T., Eskelin S., Paloheimo M. et al. Intravitreal methotrexate for retinoblastoma. Ophthalmology 2011;118(8):1689. DOI: 10.1016/j.ophtha.2011.02.005.
11. Ghassemi F., Shields C.L., Ghadimi H. et al. Combined intravitreal melphalan and topotecan for refractory or recurrent vitreous seeding from retinoblastoma. JAMA Ophthalmol 2014;132(8):936−41. DOI: 10.1001/jamaophthalmol.2014.414 2014.
12. Dolgushin B.I., Ushakova T.L., Pogrebnyakov I.V. et al. The role of selective intraarterial and intravitreal chemotherapy in the organpreserving treatment of children with retinoblastoma. Zabaykal'skiy meditsinskiy vestnik = The Transbaikalian medical Bulletin 2018;1:7−24. (In Russ.)
13. Gorovtsova O.V., Ushakova T.L., Polyakov V.G. Modern possibilities of organ-preserving treatment in children with intraocular retinoblastoma. Onkopediatriya = Oncopediatrics 2018;5(3):175−87. (In Russ.) DOI: 10.15690/onco.v5i3.1935.
14. Luke J.J., Flaherty K.T., Ribas A., Long G.V. Targeted agents and immunotherapies: optimizing outcomes in melanoma. Nat Rev Clin Oncol 2017;14(8):463−82. DOI: 10.1038/nrclinonc.2017.43.
15. Mayor M., Yang N., Sterman D. et al. Immunotherapy for non-small cell lung cancer: current concepts and clinical trials. Eur J Cardiothorac Surg 2016;49(5):1324–33. DOI: 10.1093/ejcts/ezv371.
16. Rotolo A., Karadimitris A., Ruella M. Building upon the success of CAR T19: chimeric antigen receptor T cells for hematologic malignancies. Leuk Lymphoma 2017;59(9):2040−55. DOI: 10.1080/10428194.2017.1403024.
17. Neelapu S.S., Locke F.L., Bartlett N.L. et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med 2017;377(26):253144. DOI: 10.1056/NEJMoa1707447.
18. Tesfaye M., Savoldo B. Adoptive cell therapy in treating pediatric solid tumors. Curr Oncol Rep 2018;20(9):73. DOI: 10.1007/s11912-018-0715-9.
19. Shintaro N., Hafezi-Moghadam A., Ishibashi T. Review Article. Lymphatics and Lymphangiogenesis in the Eye. J Ophthalmol 2012;2012:783163. DOI: 10.1155/2012/783163.
Review
For citations:
Ushakova T.L., Dolgopolov I.S., Sokolova Z.A., Chkadua G.Z., Titov N.S., Bukreev Yu.M., Serov Yu.A., Gorovtsova O.V., Buletov D.A., Kozlov N.A., Polyakov V.G. EXPERIMENTAL IMMUNOTHERAPY MODEL OF RETINOBLASTOMA. Russian Journal of Biotherapy. 2019;18(4):57-64. (In Russ.) https://doi.org/10.17650/1726-9784-2019-18-4-57-64