Preview

Russian Journal of Biotherapy

Advanced search

THE PROSPECTS FOR THE USE OF microRNA AS DIAGNOSTIC AND PROGNOSTIC MELANOMA BIOMARKERS

https://doi.org/10.17650/1726-9784-2019-18-4-51-56

Abstract

Despite recent advances in targeted and immune therapy, 5‑year overall survival in stages III–IV of melanoma is 50 and 10–20 %, respectively. Modern melanoma biomarkers, which are used in clinical practice, are not sufficiently effective for early diagnosis and prognosis assessment. In the last decade, circulating microRNAs (miRNAs) have come to be regarded as “ideal” melanoma biomarkers. This article presents the characteristics of miRNA biogenesis, as well as provides a critical review of circulating miRNAs as promising diagnostic and prognostic melanoma biomarkers.

About the Authors

S. V. Chulkova
N. N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation; N. I. Pirogov Russian National Research Medical University
Russian Federation

24 Kashirskoye Shosse, Moscow 115478, Russia

1 Ostrovitianov St., Moscow 117997, Russia



D. A. Ryabchikov
1N. N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation
Russian Federation
24 Kashirskoye Shosse, Moscow 115478, Russia


I. A. Dudina
FSBI FNKC FMBA of Russia
Russian Federation
28 Bul’var Orekhoviy, Moscow 115682, Russia


A. M. Kazakov
N. N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation
Russian Federation
24 Kashirskoye Shosse, Moscow 115478, Russia


A. V. Egorova
N. I. Pirogov Russian National Research Medical University
Russian Federation
1 Ostrovitianov St., Moscow 117997, Russia


K. S. Titov
MCSC the Loginov Moscow Clinical Scientific Center Is State Institution Funded By Moscow Health Department
Russian Federation
86 Shosse Entuziastov, Moscow 111123, Russia


M. N. Khagazheeva
N. N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation
Russian Federation
24 Kashirskoye Shosse, Moscow 115478, Russia


I. A. Gladilina
N. N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation; N. I. Pirogov Russian National Research Medical University
Russian Federation

24 Kashirskoye Shosse, Moscow 115478, Russia

1 Ostrovitianov St., Moscow 117997, Russia



Z. M. Galaeva
N. I. Pirogov Russian National Research Medical University
Russian Federation
1 Ostrovitianov St., Moscow 117997, Russia


N. V. Lepkova
N. I. Pirogov Russian National Research Medical University
Russian Federation
1 Ostrovitianov St., Moscow 117997, Russia


N. N. Tupitsyn
N. N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation
Russian Federation
24 Kashirskoye Shosse, Moscow 115478, Russia


References

1. Mumford S.L., Towler B.P., Pashler A.L. et al. Circulating MicroRNA biomarkers in melanoma: tools and challenges in personalised medicine. Biomolecules 2018;8(2):21. DOI: 10.3390/biom8020021.

2. Cancer Research UK Melanoma Survival (accessed on 13 January 2018). Available on: http://www. cancerresearchuk.org/about-cancer/melanoma/survival.

3. Finck S.J., Giuliano A.E., Morton D.L. LDH and melanoma. Cancer 1983;51(5):840–3. DOI: 10.1002/1097-0142(19830301)51: 5<840::AID-CNCR28205-10516>3.0.CO;2-7.

4. Deichmann M., Benner A., Bock M. et al. S100-β, melanoma-inhibiting activity, and lactate dehydrogenase discriminate progressive from nonprogressive American Joint Committee on Cancer stage IV melanoma. J Clin Oncol 1999;17(6):1891–6. DOI: 10.1200/JCO.1999.17.6.1891.

5. Karonidis A., Mantzourani M., Gogas H., Tsoutsos D. Serum S100-β levels correlate with stage, N status, mitotic rate and disease outcome in melanoma patients independent to LDH. J Buon 2017;22(5):1296–302.

6. Lee R.C., Feinbaum R.L., Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993;75(5):843–54. DOI: 10.1016/0092-8674(93)90529-y.

7. Carmell M.A., Xuan Z., Zhang M.Q., Hannon G.J. The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev 2002;16(21):2733–42. DOI: 10.1101/gad.1026102.

8. Okamura K., Phillips M.D., Tyler D.M. et al. The regulatory activity of microRNA* species has substantial influence on microRNA and 3’ UTR evolution. Nat Struct Mol Biol 2008;15(4):354–63. DOI: 10.1038/nsmb.1409.

9. Bartel D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116(2):281–97.

10. Ryabchikov D.A., Abdullaeva E.I., Dudina I.A. et al. The role of micro-RNA in cancerogenesis and breast cancer prognosis. Vestnik Rossiyskogo nauchnogo tsentra rentgenoradiologii Minzdrava Rossii = J of N.N. Blokhin Russian Cancer Research Center 2018; 18(2): 1–20 DOI: 10.1016/s0092-8674(04)00045-5.

11. Lee Y., Ahn C., Han J. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003;425(6956):415–9. DOI: 10.1038/nature01957.

12. Iwasaki S., Kobayashi M., Yoda M. et al. Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. Mol Cell 2010;39(2):292–9. DOI: 10.1016/j.molcel.2010.05.015.

13. Kawamata T., Tomari Y. Making RISC. Trends Biochem Sci 2010;35(7):368–76. DOI: 10.1016/j.tibs.2010.03.009.

14. Kwak P.B., Tomari Y. The N domain of Argonaute drives duplex unwinding during RISC assembly. Nat Struct Mol Biol 2012;19(2):145–51. DOI: 10.1038/nsmb.2232.

15. Khvorova A., Reynolds A., Jayasena S.D. Functional siRNAs and miRNAs exhibit strand bias. Cell 2003;115(2):209–16. DOI: 10.1016/S0092-8674(03)00801-8.

16. Macfarlane L.A., Murphy P.R. MicroRNA: Biogenesis, Function and Role in Cancer. Curr Genomics 2010;11(7):537–61. DOI: 10.2174/138920210793175895.

17. Selbach M., Schwanhausser B., Thierfelder N. et al. Widespread changes in protein synthesis induced by microRNAs. Nature 2008;455:58–63. DOI: 10.1038/nature07228.

18. Sohel M.H. Extracellular/Circulating MicroRNAs: Release Mechanisms, Functions and Challenges. Achiev Life Sci 2016;10:175–86. DOI: 10.1016/j.als.2016.11.007.

19. Romano G., Kwong L.N. miRNAs, melanoma and microenvironment: an intricate network. Int J Mol Sci 2017;18(11):2354. DOI: 10.3390/ijms18112354.

20. Leidinger P., Keller A., Borries A. et al. High-throughput miRNA profiling of human melanoma blood samples. BMC Cancer 2010;10:262. DOI: 10.1186/1471-2407-10-262.

21. Van Laar R., Lincoln M., van Laar B. Development and validation of a plasmabased melanoma biomarker suitable for clinical use. Br J Cancer 2018;118:857–66. DOI: 10.1038/bjc.2017.477.

22. Margue C., Reinsbach S., Philippidou D. et al. Comparison of a healthy miRNome with melanoma patient miRNomes: are microRNAs suitable serum biomarkers for cancer? Oncotarget 2015;6:12110–27. DOI: 10.18632/oncotarget.3661.

23. Fogli S., Polini B., Carpi S. et al. Identification of plasma microRNAs as new potential biomarkers with high diagnostic power in human cutaneous melanoma. Tumour Biol 2017;39(5):1010428317701646. DOI: 10.1177/1010428317701646.

24. Philippidou D., Schmitt M., Moser D. et al. Signatures of microRNAs and selected microRNA target genes in human melanoma. Cancer Res 2010;70(10):4163–73. DOI: 10.1158/0008-5472.CAN-09-4512.

25. Greenberg E., Besser M.J., Ben-Ami E. et al. A comparative analysis of total serum miRNA profiles identifies novel signature that is highly indicative of metastatic melanoma: a pilot study. Biomarkers 2013;18:502–8. DOI: 10.3109/1354750X.2013.816777.

26. Satzger I., Mattern A., Kuettler U. et al. MicroRNA-15b represents an independent prognostic parameter and is correlated with tumor cell proliferation and apoptosis in malignant melanoma. Int J Cancer 2010;126(11):2553–62. DOI: 10.1002/ijc.24960.

27. Xu Y., Brenn T., Brown E.R. et al. Differential expression of microRNAs during melanoma progression: miR-200c, miR-205 and miR-211 are downregulated in melanoma and act as tumour suppressors. Br J Cancer 2012;106(3):553–61. DOI: 10.1038/bjc.2011.568.

28. Kozubek J., Ma Z., Fleming E. et al. Indepth characterization of microRNA transcriptome in melanoma. PLoS One 2013;8(9):72699. DOI: 10.1371/journal.pone.0072699.

29. Alegre E., Sanmamed M.F., Rodriguez C. et al. Study of circulating microRNA-125b levels in serum exosomes in advanced melanoma. Arch Pathol Lab Med 2014;138(6):828–32. DOI: 10.5858/arpa.2013-0134-OA.

30. Achberger S., Aldrich W., Tubbs R. et al. Circulating immune cell and microRNA in patients with uveal melanoma developing metastatic disease. Mol Immunol 2014;58:182–6. DOI: 10.1016/j.molimm.2013.11.018.

31. Fleming N.H., Zhong J., da Silva I.P. et al. Serum-based miRNAs in the prediction and detection of recurrence in melanoma patients. Cancer 2015;121(1):51–9. DOI: 10.1002/cncr.28981.

32. Friedman E.B., Shang S., de Miera E.V. et al. Serum microRNAs as biomarkers for recurrence in melanoma. J Transl Med 2012;10:155. DOI: 10.1186/1479-5876-10-155.

33. Stark M.S., Bonazzi V.F., Boyle G.M. et al. miR-514a regulates the tumour suppressor NF1 and modulates BRAFi sensitivity in melanoma. Oncotarget 2015;6(19):17753–63.

34. Garbe C., Eigentler T.K. Diagnosis and treatment of cutaneous melanoma: State of the art 2006. Melanoma Res 2007;17:117–27. DOI: 10.1097/CMR.0b013e328042bb36.

35. Hanniford D., Segura M.F., Zhong J. et al. Identification of metastasis-suppressive microRNAs in primary melanoma. JNCI J Natl Cancer Inst 2015;107(3):494. DOI: 10.1093/jnci/dju494.

36. Saldanha G., Elshaw S., Sachs P. et al. microRNA-10b is a prognostic biomarker for melanoma. Mod Pathol 2016;29(2):112–21. DOI: 10.1038/modpathol.2015.149.

37. Qi M., Huang X., Zhou L., Zhang J. Identification of differentially expressed microRNAs in metastatic melanoma using next-generation sequencing technology. Int J Mol Med 2014;33(5):1117–21. DOI: 10.3892/ijmm.2014.1668.

38. Armand-Labit V., Meyer N., Casanova A. et al. Identification of a circulating microRNA profile as a biomarker of metastatic cutaneous melanoma 2016; Acta Derm Venereol 96(1):29–34.

39. Cui L., Li Y., Lv X. et al. Expression of microRNA-301a and its functional roles in malignant melanoma. Cell Physiol Biochem 2016;40(1–2):230–44. DOI: 10.1159/000452540.

40. Bai J., Zhang Z., Li X., Liu H. MicroRNA-365 inhibits growth, invasion and metastasis of malignant melanoma by targeting NRP1 expression. Int J Clin Exp Pathol 2015;8(5):4913–22.


Review

For citations:


Chulkova S.V., Ryabchikov D.A., Dudina I.A., Kazakov A.M., Egorova A.V., Titov K.S., Khagazheeva M.N., Gladilina I.A., Galaeva Z.M., Lepkova N.V., Tupitsyn N.N. THE PROSPECTS FOR THE USE OF microRNA AS DIAGNOSTIC AND PROGNOSTIC MELANOMA BIOMARKERS. Russian Journal of Biotherapy. 2019;18(4):51-56. (In Russ.) https://doi.org/10.17650/1726-9784-2019-18-4-51-56

Views: 560


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1726-9784 (Print)
ISSN 1726-9792 (Online)