Preview

Российский биотерапевтический журнал

Расширенный поиск

СТЕРОИДНЫЕ КОНЪЮГАТЫ КАК ПОТЕНЦИАЛЬНЫЕ ПРОТИВООПУХОЛЕВЫЕ АГЕНТЫ

https://doi.org/10.17650/1726-9784-2019-19-1-22-52

Полный текст:

Аннотация

Обзор посвящен результатам исследований новых стероидных конъюгатов, имеющих перспективу использования в качестве противоопухолевых лекарственных препаратов. Обзор состоит из 3 частей, в которых представлены данные о биологической активности конъюгатов стероидов с известными лекарственными препаратами, стероидных димеров и конъюгатов стероидов с различными природными соединениями, их фрагментами и синтетическими аналогами. Приведены структуры 231 стероидного конъюгата и данные об их противоопухолевой активности.

Об авторах

В. А. Золотцев
ФГБНУ «Научно-исследовательский институт биомедицинской химии им. В.Н. Ореховича»
Россия


А. С. Латышева
ФГБНУ «Научно-исследовательский институт биомедицинской химии им. В.Н. Ореховича»
Россия


В. С. Покровский
ФГБНУ «Научно-исследовательский институт биомедицинской химии им. В.Н. Ореховича»; ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России; ФГАОУ ВО «Российский университет дружбы народов»
Россия
Вадим Сергеевич Покровский


И. И. Хан
ФГАОУ ВО «Российский университет дружбы народов»
Россия


Р.Л. М. Алманза
ФГАОУ ВО «Российский университет дружбы народов»
Россия


А. Ю. Мишарин
ФГБНУ «Научно-исследовательский институт биомедицинской химии им. В.Н. Ореховича»
Россия


Список литературы

1. Hadden M.K., Blagg B.S.J. Dimeric approaches to anti-cancer chemotherapeutics. Anticancer Agents Med Chem 2008;8(7):807–16. DOI: 10.2174/187152008785914743.

2. Prokopiou E.M., Ryder S.A., Walsh J.J. Tumour vasculature targeting agents in hybrid/conjugate drugs. Angiogenesis 2013;16(3):503–24. DOI: 10.1007/s10456-013-9347-8.

3. Bailly C. Cell-targeted cytotoxics: a new generation of cytotoxic agents for cancer treatment. Phytochemistry Rev 2014;13(1):171–81. DOI: 10.1007/s11101-013-9300-x.

4. Rana A., Alex J.M., Chauhan M. et al. А review on pharmacophoric designs of antiproliferative agents. Med Chem Res 2015;24(3):903–20. DOI: 10.1007/s00044-014-1196-5.

5. Nepali K., Sharma S., Sharma M. et al. Rational approaches, design strategies, structure activity relationship and mechanistic insights for anticancer hybrids. Eur J Med Chem 2014;77:422–87. DOI: 10.1016/j.ejmech.2014.03.018.

6. Bansal Y., Silakari O. Multifunctional compounds: smart molecules for multifactorial diseases. Eur J Med Chem 2014;76:31–42. DOI: 10.1016/j.ejmech.2014.01.060.

7. Fortin S., Bérubé G. Advances in the development of hybrid anticancer drugs. Expert Opin Drug Discov 2013;8(8):1029–47. DOI: 10.1517/17460441.2013.798296.

8. Kerru N., Singh P., Koorbanally N. et al. Recent advances(2015–2016) in anticancer hybrids. Eur J Med Chem 2017;142:179–212. DOI: 10.1016/j.ejmech.2017.07.033.

9. Bérubé G. Natural and synthetic biologically active dimeric molecules: anticancer agents, anti-HIV agents, steroid derivatives and opioid antagonists. Curr Med Chem 2006;13:131–54. DOI: 10.2174/092986706775197908.

10. Bérubé G. An overview of molecular hybrids in drug discovery. Expert Opin Drug Discov 2016;11(3):281–305. DOI: 10.1517/17460441.2016.1135125.

11. Ding H., Yang D., Zhao C. et al. Protein-gold hybrid nanocubes for cell imaging and drug delivery. ACS Appl Mater Interfaces 2015;7(8):4713–9. DOI: 10.1021/am5083733.

12. Pandita D., Kumar S., Lather V. Hybrid poly(lactic-co-glycolic acid)nanoparticles: design and delivery prospectives. Drug Discov Today 2015;20(1):95–104. DOI: 10.1016/j.drudis.2014.09.018.

13. Deng C., Wu J., Cheng R. et al. Functional polypeptide and hybrid materials: precision synthesis via α-amino acid N-carboxyanhydride polymerization and emerging biomedical applications. Prog Polymer Sci 2014;39(2):330–64. DOI: 10.1016/j. progpolymsci.2013.10.008.

14. Su T.L., Lee T.C., Kakadiya R. The development of bis (hydroxymethyl) pyrrole analogs as bifunctional DNA cross-linking agents and their chemotherapeutic potential. Eur J Med Chem 2013;69:609–21. DOI: 10.1016/j.ejmech.2013.09.016.

15. Katsori A.M., Hadjipavlou-Litina D. Coumarin derivatives: an updated patent review(2012–2014). Expert Opin Ther Pat 2014;24(12):1323–47. DOI: 10.1517/13543776.2014.972368.

16. Teiten M.H., Dicato M., Diederich M. Hybrid curcumin compounds: a new strategy for cancer treatment. Molecules 2014;19(12):20839–63. DOI: 10.3390/molecules191220839.

17. Shao M., Yuan Y., Yu K. et al. Discovery and identification of PIM-1 kinase inhibitors through a hybrid screening approach. Mol Divers 2014;18(2):335–44. DOI: 10.1007/s11030-014-9504-z.

18. Zhan P., Pannecouque C., de Clercq E. et al. Anti-HIV drug discovery and development: current innovations and future trends. J Med Chem 2016;59(7):2849–78. DOI: 10.1021/acs.jmedchem.5b00497.

19. Zhan P., Liu X. Rationally designed multitarget anti-HIV agents. Curr Med Chem 2013;20(13):1743–58. DOI: 10.2174/0929867311320130011.

20. Drwal M.N., Griffith R. Combination of ligand- and structure-based methods in virtual screening. Drug Discov Today Technol 2013;10(3):395–401. DOI: 10.1016/j.ddtec.2013.02.002.

21. Zhan P., Itoh Y., Suzuki T., Liu X. Strategies for the discovery of targetspecific or isoform-selective modulators. J Med Chem 2015;58(19):7611–33. DOI: 10.1021/acs.jmedchem.5b00229.

22. Chauhan J.S., Dhanda S.K., Singla D. et al. QSAR-based models for designing quinazoline/imidazothiazoles/ pyrazolopyrimidines based inhibitors against wild and mutant EGFR. PLoS One 2014;9(7):101079. DOI: 10.1371/journal.pone.0101079.

23. Rao G.V., Price C.C. Synthesis of some steroidal nitrogen mustards. J Org Chem 1962;27:205–10. DOI: 10.1021/jo01048a052.

24. Jones J.B., Adam D.J., Leman J.D. Steroids and steroidases. 10. Potentially antitumor active androstane compounds containing C-17 nitrogen mustard functions. J Med Chem 1971;14(9):827–33. DOI: 10.1021/jm00291a013.

25. Jones J.B., Leman J.D. Steroids and steroidases. XI. Synthetic approaches to C-17 bis(2-hydroxyethyl)-amino compounds as potential precursors of 17-hydroxyandrostane nitrogen mustards. Can J Chem 1971;49(14): 2420–6. DOI: 10.1139/v71-395.

26. Carroll F.I., Philip A., Blackwell J.T. et al. Antitumor and antileukemic effects of some steroids and other biologically interesting compounds containing an alkylating agent. J Med Chem 1972;15(11):1158–61. DOI: 10.1021/jm00281a016.

27. Bansal R., Acharya P.C. Man-made cytotoxic steroids: exemplary agents for cancer therapy. Chem Rev 2014;114(14):6986–7005. DOI: 10.1021/cr4002935.

28. Ларионов Л.Ф., Дегтева С.А., Лесная Н.А. Экспериментальные данные о противоопухолевом препарате фенестерин. Вопросы онкологии 1962;8(4):12–4.

29. Дегтева С.А. Спектр и селективность противоопухолевого действия фенестерина. Вопросы онкологии 1964;10:52–6.

30. Дегтева С.А., Ларионов Л.Ф. Токсичность и противоопухолевое действие β-ситостерола и сложных эфиров холестерина п-[бис(2-хлорэтил)амино] фенилуксусной кислоты. Вопросы онкологии 1966;12:51–3.

31. Saha P., Debnath C., Bérubé G. Steroidlinked nitrogen mustards as potential anticancer therapeutics: a review. J Steroid Biochem Mol Biol 2013;137:271–300. DOI: 10.1016/j.jsbmb.2013.05.004.

32. Ansfield F.J., Carter A.C., Goldenberg I.S., Segaloff A. Phase I study of phenesterin (NSC-104469). Cancer Chemother Rep 1971;55(3):259–63.

33. Bloom R.E., Polivogianis L., Davis T.E. et al. Phase II evaluation of phenesterin in patients with advanced ovarian cancer. Cancer Chemother Rep 1983;67(6):601–2.

34. Papageorgiou A., Koutsourea A.I., Arsenou E.S. et al. Structure-antileukemic activity relationship study of B- and D-ring modified and nonmodified steroidal esters of chlorambucil’s active metabolite. Anticancer Drugs 2005;16(10):1075–82.

35. Mitra K., Marquis J.C., Hillier S.M. et al. A rationally designed genotoxin that selectively destroys estrogen receptor-positive breast cancer cells. J Am Chem Soc 2002;124(9):1862–3. DOI: 10.1021/ja017344p.

36. Fousteris M.A., Koutsourea A.I., Arsenou E.S. et al. Structure-antileukemic activity relationship study of B- and D-ring modified and nonmodified steroidal esters of 4-methyl-3-N,N-bis(2-chloroethyl) amino benzoic acid: a comparative study. Anticancer Drugs 2007;18(9):997–1004. DOI: 10.1097/CAD.0b013e3281822629.

37. Muntzing J., Shukla S.K., Chu T.M. et al. Pharmacoclinical study of oral estramustine phosphate(Estracyt) in advanced carcinoma of the prostate. Investig Urol 1974;12:65–8.

38. Dahllöf B., Billström A., Cabral F., Hartley-Asp B. Estramustine depolymerizes microtubules by binding to tubulin. Cancer Res 1993;53(19):4573–81.

39. Panda D., Miller H.P., Islam K. et al. Stabilization of microtubule dynamics by estramustine by binding to a novel site in tubulin: a possible mechanistic basis for its antitumor action. Proc Natl Acad Sci U S A 1997;94(20):10560–4. DOI: 10.1073/pnas.94.20.10560.

40. Hauser A.R., Merryman R. Estramustine phosphate sodium. Drug Intell Clin Pharm 1984;18(5):368–74. DOI: 10.1177/106002808401800502.

41. Catsoulacos P., Papageorgiou A., Margarity E. et al. Comparison of current alkylating agents with a homoaza-steroidal ester for antineoplastic activity. Oncology 1994;51(1):74–8. DOI: 10.1159/000227314.

42. Evenaar A.H., Wins E.H., van Putten L.M. Cell killing effectiveness of an alkylating steroid (Leo 1031). Eur J Cancer 1973;9(10):773–4. DOI: 10.1016/0014-2964(73)90071-6.

43. Brandt L., Kónyves I., Moller T.R. Therapeutic effect of Leo 1031, an alkylating corticosteroid ester, in lymphoproliferative disorders. I. Chronic lymphocytic leukaemia. Acta Med Scand 1975;197(4):317–22. DOI: 10.1111/j.0954-6820.1975. tb04925.x.

44. Moller T.R., Brandt L., Kónyves I. et al. Therapeutic effect of Leo 1031, an alkylating corticosteroid ester, in lymphoproliferative disorders. II. Lymphocytic lymphoma. Acta Med Scand 1975;197(4):323–7. DOI: 10.1111/j.0954-6820.1975. tb04926.x.

45. Brandt L., Kónyves I. Therapeutic effect of prednimustine (LEO 1031) in various types of leukaemia. Eur J Cancer 1977;13(4–5):393–8. DOI: 10.1016/0014-2964(77)90088-3.

46. Harrap K.R., Riches P.G., Gilby E.D. et al. Studies on the toxicity and antitumour activity of prednimustine, a prednisolone ester of chlorambucil. Eur J Cancer 1977;13(8):873–1. DOI: 10.1016/0014-2964(77)90143-8.

47. Kubota T., Kawamura E., Suzuki T. et al. Antitumor activity and pharmacokinetics of estra-1,3,5(10)-triene-3,17β-diol, 3-benzoate, 17-((4-(4-(bis(2-chioroethyl)amino)phenyl)-1-oxobutoxy) acetate)(bestrabucil) in human tumor xenografts serially transplanted into nude mice. Jpn J Clin Oncol 1986;16(4): 357–64. DOI: 10.1093/oxfordjournals. jjco.a039161.

48. Catsoulacos P., Boutis L. Aza-steroids. Beckmann rearrangement of 3β-acetoxy5α-androstan-17-one oxime acetate with boron fluoride. Alkylating agents. Chimie Thérapie 1973;8:215–7. DOI: 10.1002/chin.197332315.

49. Catsoulacos P., Pairas G. Activity of 17 beta-hydroxy-3-aza-A-homo-4 alpha-androsten-4-one-p-N, N-bis(2- chloroethyl)aminophenoxyacetate- (NSC-620480) in P388 leukemia. Activity of steroidal lactams in Ehrlich tumor. Methods and Find Exp Clin Pharmacol 1990;12(7):501–5.

50. Athanasiou C., Pairas G., Catsoulacos P., Athanasiou K. Synthesis of a new nor-aza-steroidal ester of p-N,N-bis- (2-chloroethyl)aminophenylbutyric acid and in vitro study of its mutagenicity and clastogenicity. Oncology 1986;43(6): 390–4. DOI: 10.1159/000226408.

51. Camoutsis C., Trafalis D.T. An overview on the antileukemic potential of D-homo-aza- and respective 17betaacetamido-steroidal alkylating esters. Invest New Drugs 2003;21(1):47–54. DOI: 10.1023/A:1022964225715.

52. Karayianni V., Papageorgiou A., Mioglou E. et al. 7-Keto hybrid steroidal esters of nitrogen mustard: cytogenetic and antineoplastic effects. Anticancer Drugs 2002;13(6):637–43. DOI: 10.1097/00001813-200207000- 00011.

53. Голубовская Л.Е., Смирнова Ж.С., Толкачев В.Н. и др. Цитотоксические стероиды с антиэстрогенной активностью в ряду 11-ацилоксиэстра-1,3,5(10)-триенов. Биоорганическая химия 2006;32(2)221‒3. DOI: 10.1134/S1068162006020130.

54. Ржезников В.М., Голубовская Л.Е., Маяцкая Е.Е. и др. Противоопухолевые стероиды. 3. Синтез и биологическая активность производных 11β-гидроксиэстра-1,3,5(10)-триенов с бис-(2-хлорэтил)аминосодержащим заместителем в положении 3. Химико-фармацевтический журнал 2008;42(3):9‒12. DOI: 10.1007/s11094- 008-0080-3.

55. Gupta A., Saha P., Descôteaux C. et al. Design, synthesis and biological evaluation of estradiol-chlorambucil hybrids as anticancer agents. Bioorg Med Chem Lett 2010;20(5):1614–8. DOI: 10.1016/j.bmcl.2010.01.053.

56. Bastien D., Hanna R., Leblanc V. et al. Synthesis and preliminary in vitro biological evaluation of 7α-testosteronechlorambucil hybrid designed for the treatment of prostate cancer. Eur J Med Chem 2013;64:442–7. DOI: 10.1016/j.ejmech.2013.04.027.

57. Acharya P.C., Bansal R. Synthesis of androstene oxime-nitrogen mustard bioconjugates as potent antineoplastic agents. Steroids 2017;123:73–83. DOI: 10.1016/j.steroids.2017.04.005.

58. Trafalis D., Geromichalou E., Dalezis P. et al. Synthesis and evaluation of new steroidal lactam conjugates with aniline mustards as potential antileukemic therapeutics. Steroids 2016;115:1–8. DOI: 10.1016/j.steroids.2016.07.009.

59. Sanchez-Cano C., Huxley M., Ducani C. et al. Conjugation of testosterone modifies the interaction of mono-functional cationic platinum (II) complexes with DNA, causing significant alterations to the DNA helix. Dalton Trans 2010;39(47):11365–74. DOI: 10.1039/c0dt00839g.

60. Sanchez-Cano C., Huxley M., Ducani C. et al. An androgenic steroid delivery vector that imparts activity to a non-conventional platinum (II) metallo-drug. Dalton Trans 2010;39(47): 11353–64. DOI: 10.1039/c0dt00838a.

61. Descôteaux C., Leblanc V., Bélanger G. et al. Improved synthesis of unique estradiol-linked platinum (II) complexes showing potent cytocidal activity and affinity for the estrogen receptor alpha and beta. Steroids 2008;73(11):1077–89. DOI: 10.1016/j.steroids.2008.04.009. 62. Descôteaux C., Provencher-Mandeville J., Mathieu I. et al. Synthesis of 17beta-estradiol platinum (II) complexes: biological evaluation on breast cancer cell lines. Bioorg Med Chem Lett 2003;13(22):3927–31. DOI: 10.1016/j.bmcl.2003.09.011.

62. Provencher-Mandeville J., Debnath C., Mandal S.K. et al. Design, synthesis and biological evaluation of estradiol-PEGlinked platinum (II) hybrid molecules: comparative molecular modeling study of three distinct families of hybrids. Steroids 2011;76(1–2):94–103. DOI: 10.1016/j.steroids.2010.09.004.

63. Provencher-Mandeville J., Descôteaux C., Mandal S.K. et al. Synthesis of 17β-estradiol-platinum (II) hybrid molecules showing cytotoxic activity on breast cancer cell lines. Bioorg Med Chem Lett 2008;18(7):2282–7. DOI: 10.1016/j.bmcl.2008.03.005.

64. Saha P., Descôteaux C., Brasseur K. et al. Synthesis, antiproliferative activity and estrogen receptor α affinity of novel estradiol-linked platinum (II) complex analogs to carboplatin and oxaliplatin. Potential vector complexes to target estrogen-dependent tissues. Eur J Medicinal Chem 2012;48:385–90. DOI: 10.1016/j.ejmech.2011.12.017.

65. Fortin S., Brasseur K., Morin N. et al. New platinum (II) complexes conjugated at position 7α of 17β-acetyl-testosterone as new combi-molecules against prostate cancer: design, synthesis, structureactivity relationships and biological evaluation. Eur J Med Chem 2013;68:433–43. DOI: 10.1016/j.ejmech.2013.08.011.

66. Wüst F., Scheller D., Spies H. et al. Synthesis of oxorhenium (V) complexes derived from 7α‐functionalized testosterone: first rhenium‐containing testosterone derivatives. Eur J Inorg Chem 1998;(6):789–93.

67. Dhyani M.V., Satpati D., Korde A. et al. Synthesis and preliminary bioevaluation of 99m tc(co)3-17α -triazolylandrost-4- ene-3-one derivative prepared via click chemistry route. Cancer Biother Radiopharm 2011;26(5):539–45. DOI: 10.1089/cbr.2011.0966.

68. Zhang X., Zuo Z., Tang J. et al. Design, synthesis and biological evaluation of novel estrogen-derived steroid metal complexes. Bioorg Med Chem Lett 2013;23(13):3793–7. DOI: 0.1016/j.bmcl.2013.04.088.

69. Szánti-Pintér E., Wouters J., Gömöry Á. et al. Synthesis of novel 13α-18- norandrostane-ferrocene conjugates via homogeneous catalytic methods and their investigation on TRPV1 receptor activation. Steroids 2015;104:284–93. DOI: 10.1016/j.steroids.2015.10.016.

70. Anstead G.M., Carlson K.E., Katzenellenbogen J.A. The estradiol pharmacophore: ligand structureestrogen receptor binding affinity relationships and a model for the receptor binding site. Steroids 1997;62(3):268–303. DOI: 10.1016/s0039-128x(96)00242-5.

71. Sadeghi-Aliabadi H., Brown J.E. Synthesis, analysis and biological evaluation of novel steroidal estrogenic prodrugs for the treatment of breast cancer. Pharm Biol 2004;42(4–5):367–73. DOI: 10.1080/13880200490519686.

72. Hartman N.G., Patterson L.H., Workman P. et al. Doxorubicin-3’-NHoestrone-17-oxime-ethyl-carbonyl, a doxorubicin-oestrone conjugate that does not redox cycle in rat liver microsomes. Biochem Pharmacol 1990;40(5):1164–7. DOI: 10.1016/0006-2952(90)90511-I.

73. Saha P., Fortin S., Leblanc V. et al. Design, synthesis, cytocidal activity and estrogen receptor α affinity of doxorubicin conjugates at 16α-position of estrogen for site-specific treatment of estrogen receptor positive breast cancer. Steroids 2012;77(11):1113–22. DOI: 10.1016/j.steroids.2012.06.004.

74. Cai B., Liao A., Lee K.K. et al. Design, synthesis of methotrexate-diosgenin conjugates and biological evaluation of their effect on methotrexate transport-resistant cells. Steroids 2016;116:45–51. DOI: 10.1016/j.steroids.2016.10.006.

75. Sreekanth V., Bansal S., Motiani R.K. et al. Design, synthesis, and mechanistic investigations of bile acid-tamoxifen conjugates for breast cancer therapy. Bioconjug Chem 2013;24(9):1468–84. DOI: 10.1021/bc300664k.

76. Garrido M., González-Arenas A., Camacho-Arroyo I. et al. Effect of new hybrids based on 5,16-pregnadiene scaffold linked to an anti-inflammatory drug on the growth of a human astrocytoma cell line (U373). Eur J Med Chem 2015;93:135–41. DOI: 10.1016/j.ejmech.2015.01.048.

77. Letis A.S., Seo E.J., Nikolaropoulos S.S. et al. Synthesis and cytotoxic activity of new artemisinin hybrid molecules against human leukemia cells. Bioorg Med Chem 2017;25(13):3357–67. DOI: 10.1016/j.bmc.2017.04.021.

78. Fournier D., Poirier D. Estradiol dimers as a new class of steroid sulfatase reversible inhibitors. Bioorg Med Chem Lett 2009;19(3):693–6. DOI: 10.1016/j.bmcl.2008.12.047.

79. Arenas-González A., MendezDelgado L.A., Merino-Montiel P. et al. Synthesis of monomeric and dimeric steroids containing[1,2,4]triazolo [1,5-α] pyrimidines. Steroids 2016;116:13–9. DOI: 10.1016/j.steroids.2016.09.014.

80. Hadden M.K., Blagg B.S.J. Dimeric Approaches to Anti-Cancer Chemotherapeutics. Anticancer Agents Med Chem 2008;8(7):807–16. DOI: 10.2174/187152008785914743

81. Denisov I.G., Mak P.J., Grinkova Y.V. et al. The use of isomeric testosterone dimers to explore allosteric effects in substrate binding to cytochrome P450 CYP3A4. J Inorg Biochem 2015;158:77–85. DOI: 10.1016/j.jinorgbio.2015.12.019.

82. Vesper A.-R., Lacroix J., C.-Gaudreault R. et al. Synthesis of novel C2 -symmetric testosterone dimers and evaluation of antiproliferative activity on androgendependent and -independent prostate cancer cell lines. Steroids 2016;115:98–104. DOI: 10.1016/j.steroids.2016.08.012.

83. Chanphai P., Agudelo D., Vesper A.R. et al. Effect of testosterone and its aliphatic and aromatic dimmers on DNA morphology. Int J Biol Macromol 2016;95:850–5. DOI: 10.1016/j.ijbiomac.2016.09.090.

84. Chanphai P., Agudelo D., Vesper A.R. et al. Testosterone and its dimers alter tRNA morphology. J Pharm Biomed Anal 2017;134:269–74. DOI: 10.1016/j.jpba.2016.11.053.

85. Chanphai P., Bekale L., Tajmir-Riahi H.A. Conjugation of steroids with PAMAM anoparticles. Colloids Surf B Biointerfaces 2015;136:1035–41. DOI: 10.1016/j.colsurfb.2015.10.042.

86. Chanphai P., Vesper A.R., Bekale L. et al. Transporting testosterone and its dimers by serum proteins. J Photochem Photobiol B 2015;153:173–83. DOI: 10.1016/j.jphotobiol.2015.09.008.

87. Jurášek M., Džubák P., Sedlák D. et al. Preparation, preliminary screening of new types of steroid conjugates and their activities on steroid receptors. Steroids 2013;78(3):356–61. DOI: 10.1016/j.steroids.2012.11.016.

88. Lu Y.M., Deng L.Q., Huang X. et al. Synthesis and anionophoric activities of dimeric polyamine-sterol conjugates: the impact of rigid vs. flexible linkers. Org Biomol Chem 2013;11(47):8221–7. DOI: 10.1039/c3ob41969j.

89. Fournier D., Poirier D., Mazumdar M. et al. Design and synthesis of bisubstrate inhibitors of type 1 17β-hydroxysteroid dehydrogenase: overview and perspectives. Eur J Med Chem 2008;43(11):2298–306. DOI: 10.1016/j.ejmech.2008.01.044.

90. Bérubé M., Poirier D. Improved synthesis of EM-1745, preparation of its C17-ketone analogue and comparison of their inhibitory potency on 17β-hydroxysteroid dehydrogenase type 1. J Enzyme Inhib Med Chem 2009;24(3):832–43. DOI: 10.1080/14756360802399761.

91. Qiu W., Campbell R.L., Ganglof A. et al. A concerted, rational design of type 1 17β-hydroxysteroid dehydrogenase inhibitors: estradiol-adenosine hybrids with high affinity. FASEB J 2002;16(13): 1829–31. DOI: 10.1096/fj.02-0026fje.

92. Bodnár B., Mernyák E., Wölfling J. et al. Synthesis and biological evaluation of triazolyl 13α-estrone-nucleoside bioconjugates. Molecules 2016;21(9):1212. DOI: 10.3390/molecules21091212.

93. Bodnár B., Mernyák E., Szabó J. et al. Synthesis and in vitro investigation of potential antiproliferative monosaccharide-D-secoestrone bioconjugates. Bioorg Medl Chem Lett 2017;27(9):1938–42. DOI: 10.1016/j.bmcl.2017.03.029.

94. Navacchia M.L., Marchesi E., Mari L. et al. Rational design of nucleoside-bile acid conjugates incorporating a triazole moiety for anticancer evaluation and SAR exploration. Molecules 2017;22(10):1710. DOI: 10.3390/molecules22101710.

95. Mendoza-Sanchez R., Cotnoir-White D., Kulpa J. et al. Design, synthesis and evaluation of antiestrogen and histone deacetylase inhibitor molecular hybrids. Bioorg Med Chem 2015;23(24):7597– 606. DOI: 10.1016/j.bmc.2015.11.005.

96. Jurášek M., Džubák P., Rimpelová S. et al. Trilobolide-steroid hybrids: synthesis, cytotoxic and antimycobacterial activity. Steroids 2016;117:97–104. DOI: 10.1016/j.steroids.2016.08.011.

97. Musa M.A., Khan M.O., Cooperwood J.S. Synthesis and antiproliferative activity of coumarin-estrogen conjugates against breast cancer cell lines. Lett Drug Des Discov 2009;6(2):133–8. DOI: 10.2174/157018009787582624.

98. Нуриева Е.В., Зефиров Н.А, Мамаева А.В. и др. Синтез стероидных аналогов тубулокластина, их цитотоксичность и действие на микротрубочки клеток карциномы А549. Известия Академии наук. Серия химическая 2018;67(4):688–9393. DOI: 10.1007/s11172-018-2123-6.

99. Song J.L., Zhang J., Liu C.L. et al. Design and synthesis of pregnenolone/ 2-cyanoacryloyl conjugates with dual NF-κB inhibitory and antiproliferative activities. Bioorg Med Chem Lett 2017;27(20):4682–6. DOI: 10.1016/j.bmcl.2017.09.013.

100. Ke S., Shi L., Yang Z. Discovery of novel isatin-dehydroepiandrosterone conjugates as potential anticancer agents. Bioorg Med Chem Lett 2014;25(20): 4628–31. DOI: 10.1016/j.bmcl.2015.08.041.

101. Sudhakar G., Bathula S.R., Banerjee R. Development of new estradiol-cationic lipid hybrids: ten-carbon twin chain cationic lipid is a more suitable partner for estradiol to elicit better anticancer activity. Eur J Med Chem 2014;86:653–63. DOI: 10.1016/j.ejmech.2014.09.030.

102. Sakamoto K.M., Kim K.B., Kumagai A. et al. Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc Natl Acad Sci USA 2001;98(15):8554–9. DOI: 10.1073/pnas.141230798.

103. Sakamoto K.M., Kim K.B., Verma R. et al. Development of Protacs to target cancer-promoting proteins for ubiquitination and degradation. Mol Cell Proteomics 2003;2(12):1350–8. DOI: 10.1074/mcp.T300009-MCP200.

104. Schneekloth J.S.Jr., Fonseca F.N., Koldobskiy M. et al. Chemical genetic control of protein levels: selective in vivo targeted degradation. J Am Chem Soc 2004;126(12):3748–54. DOI: 10.1021/ja039025z.

105. Rodriguez-Gonzalez A., Cyrus K., Salcius M. et al. Targeting steroid hormone receptors for ubiquitination and degradation in breast and prostate cancer. Oncogene 2008;27(57):7201–11. DOI: 10.1038/onc.2008.320.

106. Itoh Y., Kitaguchi R., Ishikawa M. et al. Design, synthesis and biological evaluation of nuclear receptordegradation inducers. Bioorg Med Chem 2011;19(22):6768–78. DOI: 10.1016/j.bmc.2011.09.041.

107. Levine P.M., Imberg K., Garabedian M.J., Kirshenbaum K. Multivalent Peptidomimetic conjugates: a versatile platform for modulating androgen receptor activity. J Am Chem Soc 2012;134(16):6912–5. DOI: 10.1021/ja300170n.

108. Wang Y., Dehigaspitiya D.C., Levine P.M. et al. Multivalent peptoid conjugates which overcome enzalutamide resistance in prostate cancer cells. Cancer Res 2016;76(17):5124–32. DOI: 10.1158/0008-5472.CAN-16-0385.

109. Levine P.M., Lee E., Greenfield A. et al. Androgen receptor antagonism by divalent ethisterone conjugates in castrate-resistant prostate cancer cells. ACS Chem Biol 2012;7(10):1693–701. DOI: 10.1021/cb300332w.

110. James D.A., Swamy N., Paz N. et al. Synthesis and estrogen receptor binding affinity of a porphyrin-estradiol conjugate for targeted photodynamic therapy of cancer. Bioorg Med Chem Lett 1999;9(16):2379–84. DOI: 10.1016/s0960-894x(99)00390-x.

111. Swamy N., James D.A., Mohr S.C. et al. An estradiol-porphyrin conjugate selectively localizes into estrogen receptor-positive breast cancer cells. Bioorg Med Chem 2002; 10(10):3237–43. DOI: 10.1016/s0968-0896(02)00242-0.

112. El-Akra N., Noirot A., Faye J.C. et al. Synthesis of estradiol-pheophorbide α conjugates: evidence of nuclear targeting, DNA damagre and improved photodynamic activity in human breast cancer and vascular endothelial cells. Photochem Photobiol Sci 2006;5(11): 996–9. DOI: 10.1039/b606117f.

113. Sadler S., Persons K.S., Jones G.B. et al. Internalization of a C17α-alkynylestradiol-porphyrin conjugate into estrogen receptor positive MCF-7 breast cancer cells. Bioorg Med Chem Lett 2011;21(15):4638–41. DOI: 10.1016/j.bmcl.2011.05.094.

114. Zolottsev V.A., Zazulina O.V., Morozevich G.E. et al. Conjugates of pyropheophorbide α with androgen receptor ligands. Makrogeterotsikly = Macroheterocycles 2017;10(1):77–80. DOI: 10.6060/mhc160857p.

115. Zolottsev V.A., Ponomarev G.V., Taratynova M.O. et al. Conjugates of 17-substituted testosterone and epitestosterone with pyropheophorbide a differing in the length of linkers. Steroids 2018;138:82–90. DOI: 10.1016/j.steroids.2018.06.011.

116. Taratynova M.O., Zolottsev V.A., Tkachev Yа.V. et al. Trifunctional (pyropheophorbide α-steroid-hexadecyl chain) conjugates: synthesis, solubilization, interaction with cultured cells. Makrogeterotsikly = Macroheterocycles 2018;11(3):277–85. DOI: 10.6060/mhc180999p.


Для цитирования:


Золотцев В.А., Латышева А.С., Покровский В.С., Хан И.И., Алманза Р.М., Мишарин А.Ю. СТЕРОИДНЫЕ КОНЪЮГАТЫ КАК ПОТЕНЦИАЛЬНЫЕ ПРОТИВООПУХОЛЕВЫЕ АГЕНТЫ. Российский биотерапевтический журнал. 2020;19(1):22-52. https://doi.org/10.17650/1726-9784-2019-19-1-22-52

For citation:


Zolottsev V.A., Latysheva A.S., Pokrovsky V.S., Khan I.I., Almanza R.M., Misharin A.Y. STEROID CONJUGATES AS POTENTIAL ANTI-CANCER AGENTS. Russian Journal of Biotherapy. 2020;19(1):22-52. (In Russ.) https://doi.org/10.17650/1726-9784-2019-19-1-22-52

Просмотров: 249


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1726-9784 (Print)
ISSN 1726-9792 (Online)