Preview

ASSESSMENT OF THE TOXICOLOGICAL PROPERTIES OF DOCETAXEL LOADED FOLATE-MODIFIED POLYMER PARTICLES IN VIVO

https://doi.org/10.17650/1726-9784-2019-19-2-55-64

Abstract

Introduction One of the perspective approaches to the development of anticancer chemotherapy drugs is the use of submicron vectorizeddelivery systems that increase the selectivity of action and reduce the toxic side effects of chemotherapy. A delivery system of docetaxel(DOC) loaded poly(lactide-co-glycolide) (PLGA) particles modified with folic acid dodecylamide (FAD) was developed (PLGA-DOC-FAD).
The aim of the research was a comparative toxicological study of DOC-loaded particles and standard docetaxel solution form in acuteand subchronic experiments in mice after intravenous administration.
Materials and methods The research was conducted in female C57BL/6 mice. During the study of acute toxicity, drugs were administeredin the following dose range: 20, 60, 90, 120, 160 mg/kg. Over 30 days, mortality and body weight were evaluated, pathomorphologicalstudies were performed. The study of toxicity in conditions of subchronic administration of medicine was conducted using three timesdaily administration in single doses of 11 and 22 mg/kg. Subchronic toxicity of the drugs was studied with three times daily administrationin single doses of 11 and 22 mg/kg. The necessary studies were performed within 30 days.
Results With a single injection of PLGA-DOC-FAD in doses of 20, 60, 90 mg/kg, the death of animals wasn’t observed; at doses of 120 and160 mg/kg, the death of animals was detected in 1–4 days. In the case of administration of the DOC substance, the death of animalsoccurred within a day after the administration of doses of 60, 90, 120, 160 mg/kg. The pattern of intoxication was similar in case of compared drugs and manifested in hypodynamia, impaired movement coordination, hind limbs paresis, though the manifestation degreethereof was more expressed in the groups with the introduction of DOC than in the case of the introduction of PLGA-DOC-FAD. It wasdetected that the LD50 for PLGA-DOC-FAD is 140 mg/kg, and for the DOC substance – 112 mg/kg. In case of subchronic administration, the detected toxic properties of drug depend on the size of the dose applied. The administration of a single dose of 22 mg/kg of PLGA-DOC-FAD caused lethal effects (2/10), reversible delay in weight gain and leucopenia in surviving animals, and an increase in the relativemass of the spleen. The use of PLGA-DOC-FAD in a single dose of 11 mg/kg didn’t cause death, was well tolerated and characterizedby similar toxicity with the docetaxel substance.
Conclusion Based on experimental data, the toxic dose levels of PLGA-DOC-FAD were determined under acute and subchronic administration. The results obtained allowed us to recommend PLGA-DOC-FAD for further examination.

About the Authors

A. A. Krasheninnikova
National Research Center “Kurchatov Institute”; Institute of General Pathology and Pathophysiology
Russian Federation

1 Akademika Kurchatova ploshchad’, Moscow 123182

8 Baltiyskaya St., Moscow 125315





V. V. Zavarzina
National Research Center “Kurchatov Institute”
Russian Federation
1 Akademika Kurchatova ploshchad’, Moscow 123182


D. S. Panova
National Research Center “Kurchatov Institute”
Russian Federation
1 Akademika Kurchatova ploshchad’, Moscow 123182


N. V. Gukasova
National Research Center “Kurchatov Institute”
Russian Federation
1 Akademika Kurchatova ploshchad’, Moscow 123182


S. L. Kuznetsov
National Research Center “Kurchatov Institute”
Russian Federation
1 Akademika Kurchatova ploshchad’, Moscow 123182


I. A. Tubasheva
National Research Center “Kurchatov Institute”
Russian Federation
1 Akademika Kurchatova ploshchad’, Moscow 123182


V. Yu. Balabanyan
M.V. Lomonosov Moscow State University
Russian Federation
1 Leninskie Gory, Moscow 119991


Yu. I. Poltavets
National Research Center “Kurchatov Institute”
Russian Federation
1 Akademika Kurchatova ploshchad’, Moscow 123182


References

1. Prabhu R.H., Patravale V.B., Joshi M.D. Polymeric nanoparticles for targeted treatment in oncology: current insights. Int J Nanomedicine 2015;10:1001–18. DOI: 10.2147/IJN.S56932.

2. Doppalapudi S., Jain A., Domb A.J., Khan W. Biodegradable polymers for targeted delivery of anti-cancer drugs. Expert Opin Drug Deliv 2016;13(6):891–909. DOI: 10.1517/17425247.2016.1156671.

3. Bahrami B., Mohammadnia-Afrouzi M., Bakhshaei P. et al. Folate-conjugated nanoparticles as a potent therapeutic approach in targeted cancer therapy. Tumour Biol 2015;36(8):5727–42. DOI: 10.1007/s13277-015-3706-6.

4. Санжаков М.А., Игнатов Д.В., Прозоровский В.Н. и др. Синтез адресного конъюгата для фосфолипидной системы транспорта лекарств. Биомедицинская химия 2014;60(6): 713–6. DOI: 10.18097/pbmc20146006713. [Sanzhakov M.A., Ignatov D.V., Prozorovskiy V.N. et al. Development of Targeted Drug Delivery System: Synthesis of Conjugates of Address Fragment (RA-COOH) With Ligand (R-NH2). Biomeditsinskaya khimiya = Biomedical chemistry 2014;60(6):713–6. (In Russ.)].

5. Suvorov N.V., Mironov A.F., Grin M.A. Folic acid and its derivatives for targeted photodynamic therapy of cancer. Rus Chem Bulletin 2017;66(11):1982–2008. DOI: 10.1007/s11172-017-1973-7.

6. Montero A., Fossella F., Hortobagyi G., Valero V. Docetaxel for treatment of solid tumours: a systematic review of clinical data. Lancet Oncol 2005;6(4):229–39. DOI: 10.1016/S1470-2045(05)70094-2.

7. PRODUCT MONOGRAPH TAXOTERE® (docetaxel for injection). Sanofi-Aventis Canada Inc. Laval (Québec), 2017. Available by: URL: https://www.products.sanofi.ca/en/taxotere.pdf.

8. Su C.Y., Liu J.J., Ho Y.S. et al. Development and characterization of docetaxel-loaded lecithin-stabilized micellar drug delivery system (LsbMDDs) for improving the therapeutic efficacy and reducing systemic toxicity. Eur J Pharm Biopharm 2018;123:9–19. DOI: 10.1016/j.ejpb.2017.11.006.

9. Nikolskaya E.D., Zhunina O.A., Yabbarov N.G. et al. The docetaxel polymeric form and its antitumor activity. Russian J Bioorganic Chem 2017;43:278–85. DOI: 10.1134/S1068162017030116.

10. Hu L., Pang S., Hu Q. et al. Enhanced antitumor efficacy of folate targeted nanoparticles co-loaded with docetaxel and curcumin. Biomed Pharmacother 2015;75:26–32. DOI: 10.1016/j.biopha.2015.08.036.

11. Esmaeili F., Ghahremani M.H., Ostad S.N. et al. Folate-receptor-targeted delivery of docetaxel nanoparticles prepared by PLGA-PEG-folate conjugate. J Drug Target 2008;16(5):415–23. DOI: 10.1080/10611860802088630.

12. Poltavets Y.I., Zhirnik A.S., Zavarzina V.V. et al. In vitro anticancer activity of folate-modifed docetaxel-loaded PLGA nanoparticles against drug-sensitive and multidrug-resistant cancer cells. Cancer Nanotechnology 2019;10(2). DOI: 10.1186/s12645-019-0048-x.

13. Полтавец Ю.И., Воронцов Е.А., Заварзина В.В. и др. Полимерный комплекс для молекулярно-прицельной терапии и способ его получения. Патент РФ № 2 675 810 C1 от 19.12.2017. [Poltavets Yu.I., Vorontsov E.A., Zavarzina V.V. et al. Polymeric complex for molecular targeted therapy and method for its obtaining. RU 2 675 810 C1, 19.12.2017. (In Russ.)].

14. Council of Europe. European Convention for the protection of vertebrate animals used for experimental and other scientific purposes. ETS 1986;123.

15. Gaoe H., Pang Z., Pan S. et al. Antiglioma effect and safety of docetaxelloaded nanoemulsion. Arch Pharm Res 2012;35(2):333–41. DOI: 10.1007/s12272-012-0214-8.

16. Bissery M.C., Guénard D., Guéritte-Voegelein F., Lavelle F. Experimental Antitumor Activity of Taxotere (RP 56976, NSC 628503), a Taxol Analogue. Cancer Res 1991;51(18):4845–52.

17. Беленький М.Л. Элементы количественной оценки фармакологического эффекта. Л.: Государственное издательство медицинской литературы (Медгиз), 1963. С. 81–106. [Belen’kij M.L. Elements of quantitative assessment of pharmacological effect. Leningrad: State Publishing House of Medical Literature (Medgiz) 1963. P. 81–106. (In Russ.)].

18. Sun Y., Zhao Y., Teng S. et al. Folic acid receptor-targeted human serum albumin nanoparticle formulation of cabazitaxel for tumor therapy. Int J Nanomedicine 2018;14:135–48. DOI: 10.2147/IJN.S181296.

19. Lv W., Cheng L., Li B. Development and evaluation of a novel TPGS-mediated paclitaxel-loaded PLGA-mPEG nanoparticle for the treatment of ovarian cancer. Chem Pharm Bull 2015;63(2):68–74. DOI: 10.1248/cpb.c14-00423.

20. Demoy M., Andreux J.P., Weingarten C. et al. Spleen capture of nanoparticles: influence of animal species and surface characteristics. Pharm Res 1999;16(1):37–41. DOI: 10.1023/A:1018858409737.

21. Трещалин И.Д., Переверзева Э.Р., Бодягин Д.А. и др. Сравнительное экспериментальное токсикологическое исследование доксорубицина и его наносомальных лекарственных форм. Российский биотерапевтический журнал 2008;7(3):24–33. [Treshсhalin I.D., Pereverzeva E.R., Bodyagin D.A. et al. Comparative experimental toxicological study of doxorubicin and nanoparticle formulations. Rossiyskiy bioterapevticheskiy zhurnal = Russian Jornal of Biotherapy 2008;7(3):24–33. (In Russ.)].

22. Peracchia M.T., Fattal E., Desmaële D. et al. Stealth PEGylated polycyanoacrylate nanoparticles for intravenous administration and splenic targeting. J Control Release 1999;60(1):121–8. DOI: 10.1016/S0168-3659(99)00063-2.


Review

For citations:


Krasheninnikova A.A., Zavarzina V.V., Panova D.S., Gukasova N.V., Kuznetsov S.L., Tubasheva I.A., Balabanyan V.Yu., Poltavets Yu.I. ASSESSMENT OF THE TOXICOLOGICAL PROPERTIES OF DOCETAXEL LOADED FOLATE-MODIFIED POLYMER PARTICLES IN VIVO. Russian Journal of Biotherapy. 2020;19(2):55-64. (In Russ.) https://doi.org/10.17650/1726-9784-2019-19-2-55-64

Views: 439


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1726-9784 (Print)
ISSN 1726-9792 (Online)