РОЛЬ ГЕПСИДИНА 25 В РАЗВИТИИ АНЕМИЧЕСКОГО СИНДРОМА, АССОЦИИРОВАННОГО СО ЗЛОКАЧЕСТВЕННЫМИ ЗАБОЛЕВАНИЯМИ
https://doi.org/10.17650/1726-9784-2020-19-4-29-34
Аннотация
Анемический синдром (АС) – частое осложнение онкологических заболеваний, которое ухудшает результаты лечения и снижает качество жизни пациентов. Обзор литературы посвящен роли пептидного гормона гепсидина 25 (ГП25), регулирующего системный и локальный гомеостаз железа, в развитии анемии. Основная биологическая функция ГП25 – снижение уровня железа в кровеносном русле – реализуется через снижение мобилизации железа из депо и уменьшение абсорбции железа в кишечнике. Современные подходы к диагностике и терапии АС при онкологических заболеваниях обязательно включают оценку уровня ГП25. Показано, что ГП25 участвует в патогенезе анемии при злокачественных новообразованиях. Онкологические заболевания часто сопровождаются высоким уровнем провоспалительных цитокинов, в частности интерлейкина 6 (IL-6), который вызывает повышение продукции ГП25. Под воздействием IL-6 ГП25 блокирует ферропортины и высвобождение железа макрофагами, что приводит к развитию функционального дефицита железа и железодефицитному эритропоэзу, таким образом, при длительном воздействии провоспалительных цитокинов развивается анемия хронического заболевания. Лечение АС, ассоциированного со злокачественными новообразованиями, является сложной задачей. Терапевтическое воздействие на ГП25 и IL-6 – многообещающая перспектива для коррекции анемии онкологических больных. Новые стратегии в патогенетической терапии пациентов с анемией связаны с применением антигепсидиновых препаратов, снижающих уровень ГП25 в крови. Однако в некоторых исследованиях показано, что увеличение содержания железа в кровеносном русле увеличивает его доступность для опухоли и способствует ее росту, поэтому необходимо дальнейшее более глубокое изучение проблемы коррекции АС у онкологических больных.
Об авторах
М. Н. ХагажееваРоссия
Мадина Назировна Хагажеева
115478 Москва, Каширское шоссе, 24
А. В. Снеговой
Россия
115478 Москва, Каширское шоссе, 24
В. Н. Блиндарь
Россия
115478 Москва, Каширское шоссе, 24
М. М. Добровольская
Россия
115478 Москва, Каширское шоссе, 24
Д. А. Рябчиков
Россия
115478 Москва, Каширское шоссе, 24
И. Б. Кононенко
Россия
115478 Москва, Каширское шоссе, 24
А. М. Келеметов
Россия
115478 Москва, Каширское шоссе, 24
А. М. Казаков
Россия
115478 Москва, Каширское шоссе, 24
О. В. Пальчинская
Россия
115478 Москва, Каширское шоссе, 24
Список литературы
1. Knight K., Wade S., Balducci L. Prevalence and outcomes of anemia in cancer: a systematic review of the literature. Am J Med 2004;116(Suppl 7A):11S–26S. DOI: 10.1016/j.amjmed.2003.12.008.
2. Aapro M., Beguin Y., Bokemeyer C. et al. Management of anaemia and iron deficiency in patients with cancer: ESMO Clinical Practice Guidelines. Ann Oncol 2018;29(Suppl 4):iv96–iv110. DOI: 10.1093/annonc/mdx758.
3. Nicolae C.D., Coman O.A., Ene C. et al. Hepcidin in neoplastic disease. J Med Life 2013;6(3):355–60. PMID: 24146699.
4. Chaparro C.M., Suchdev P.S. Anemia epidemiology, pathophysiology, and etiology in low- and middle-income countries. Ann N Y Acad Sci 2019;1450(1):15–31. DOI: 10.1111/nyas.14092.
5. Блиндарь В.Н., Зубрихина Г.Н., Давыдова Т.В. и др. Разработка стратегических подходов к современной диагностике анемического синдрома у больных раком молочной железы. Клиническая лабораторная диагностика 2019;64(4):210–5. DOI: 10.18821/0869-2084-2019-64-4-210-215.
6. Krause A., Neitz S., Magert H.J. et al. LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett 2000;480(2–3):147– 50. DOI: 10.1016/s0014-5793(00)01920-7.
7. Park C.H., Valore E.V., Waring A.J. et al. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem 2001;276(11):7806–10. DOI: 10.1074/jbc.M008922200.
8. Pigeon C., Ilyin G., Courselaud B. et al. A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem 2001;276(11):7811–9. DOI: 10.1074/jbc.M008923200.
9. Haase V.H. Hypoxic regulation of erythropoiesis and iron metabolism. Am J Physiol Renal Physiol 2010;299(1):1–13. DOI: 10.1152/ajprenal.00174.2010.
10. Tesfay L., Clausen K.A., Kim J.W. et al. Hepcidin regulation in prostate and its disruption in prostate cancer. Cancer Res 2015;75:2254–63. DOI: 10.1158/0008-5472.CAN-14-2465.
11. Pippard M.J., Callender S.T., Warner G.T. et al. Iron absorption and loading in beta-thalassaemia intermedia. Lancet 1979;2(8147):819–21.
12. Iolascon A., Esposito M.R., Russo R. Clinical aspects and pathogenesis of congenital dyserythropoietic anemias: from morphology to molecular approach. Haematologica 2012;97(12):1786–94. DOI: 10.3324/haematol.2012.072207.
13. Pootrakul P., Sirankapracha P., Hemsorach S. et al. A correlationof erythrokinetics, ineffective erythropoiesis, and erythroid precursor apoptosis in Thai patients with thalassemia. Blood 2000;96(7):2606–12.
14. Tanno T., Bhanu N.V., Oneal P.A. et al. High levels of GDF15 in thalassemia suppress expression of the iron regulatory protein hepcidin. Nat Med 2007;13(9): 1096–101. DOI: 10.1038/nm1629.
15. Kautz L., Jung G., Valore E.V. et al. Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat Genet 2014;46(7):678–84. DOI: 10.1038/ng.2996.
16. Origa R., Galanello R., Ganz T. et al. Liver iron concentrations and urinary hepcidin in beta-thalassemia. Haematologica 2007;92(5):583–8. DOI: 10.3324/haematol.10842.
17. Roy C.N. Anemia of inflammation. Hematol Am Soc Hematol Educ Program 2010;2010:276–80. DOI: 10.1182/asheducation-2010.1.276.
18. Chung A., Leo K., Wong G. et al. Giant hepatocellular adenoma presenting with chronic iron deficiency anemia. Am J Gastroenterol 2006;101(9):2160–2. DOI: 10.1111/j.1572-0241.2006.00607.x.
19. Finberg K.E., Heeney M.M., Campagna D.R. et al. Mutations in TMPRSS6 cause iron-refractory iron deficiency anemia (IRIDA). Nat Genet 2008;40(5): 569–71. DOI: 10.1038/ng.130.
20. Sasu B.J., Cooke, K.S., Arvedson T.L. et al. Antihepcidin antibody treatment modulates iron metabolism and effective in a mouse model of inflammationinduced anemia. Blood 2010;115(17):3616–24. DOI: 10.1182/blood-2009-09-245977.
21. Hong D.S., Angelo L.S., Kurzrock R. Interleukin-6 and its receptor in cancer: implications for translational therapeutics. Cancer 2007;110(9):1911–28. DOI: 10.1002/cncr.22999.
22. Maccio A., Madeddu C., Massa D. et al. Hemoglobin levels correlate with interleukin-6 levels in patients with advanced untreated epithelial ovarian cancer: role of inflammation in cancer-related anemia. Blood 2005;106(1):362–7. DOI: 10.1182/blood-2005-01-0160.
23. Nieken J., Mulder N.H., Buter J. et al. Recombinant human interleukin-6 induces a rapid and reversible anemia in cancer patients. Blood 1995;86(3):900–5.
24. Nemeth E., Rivera S., Gabajan V. et al. IL-6 mediates hypo-ferramia inducing synthesis of the iron regulatory hormone hepcidin. J Clin Inv 2004;113(9):1271–6. DOI: 10.1172/JCI20945.
25. Noguchi-Sasaki M., Sasaki Y., Shimonaka Y. et al. Treatment with antiIL-6 receptor antibody prevented increase in serum hepcidin levels and improved anemia in mice inoculated with IL-6-producing lung carcinoma cells. BMC Cancer 2016;16:270. DOI: 10.1186/s12885-016-2305-2.
26. Coussens L.M., Werb Z. Inflammation and cancer. Nature 2002;420:860–7. DOI: 10.1038/nature01322.
27. Sasu B.J., Cooke K.S., Arvedson T.L. et al. Antihepcidin antibody treatment modulates iron metabolism and effective in a mouse model of inflammation-induced anemia. Blood 2010;115(17):3616–24. DOI: 10.1182/blood-2009-09-245977.
28. Vadhan-Raj S., Abonour R., Goldman J.W. et al. A first-in-human phase 1 study of a hepcidin monoclonal antibody, LY2787106, in cancer-associated anemia. Journal of Hematology Oncology 2017;10(73):1–12. DOI: 10.1186/s13045-017-0427-x.
29. Kurzrock R., Voorhees P.M., Casper C. et al. A phase I, open-label study of siltuximab, an anti-IL-6 monoclonal antibody, in patients with B-cell nonHodgkin lymphoma, multiple myeloma, or Castleman disease. Clin Cancer Res 2013;19(13):3659–70. DOI: 10.1158/1078-0432.CCR-12-3349.
30. Pinnix Z.K., Miller L.D., Wang W. et al. Ferroportin and iron regulation in breast cancer progression and prognosis. Sci Transl Med 2010;2(43):43ra56. DOI: 10.1126/scisignal.3001127.
31. Zhang S., Chen Y., Guo W. et al. Disordered hepcidin-ferroportin signaling promotes breast cancer growth. Cell Signal 2014;26(11):2539–50. DOI: 10.1016/j.cellsig.2014.07.029.
Рецензия
Для цитирования:
Хагажеева М.Н., Снеговой А.В., Блиндарь В.Н., Добровольская М.М., Рябчиков Д.А., Кононенко И.Б., Келеметов А.М., Казаков А.М., Пальчинская О.В. РОЛЬ ГЕПСИДИНА 25 В РАЗВИТИИ АНЕМИЧЕСКОГО СИНДРОМА, АССОЦИИРОВАННОГО СО ЗЛОКАЧЕСТВЕННЫМИ ЗАБОЛЕВАНИЯМИ. Российский биотерапевтический журнал. 2020;19(4):29-34. https://doi.org/10.17650/1726-9784-2020-19-4-29-34
For citation:
Khagazheeva M.N., Snegovoy A.V., Blindar V.N., Ryabchikov D.A., Dobrovolskaya M.M., Kononenko I.B., Kelemetov A.M., Kazakov A.M., Palchinskaya O.V. THE ROLE OF HEPCIDIN 25 IN THE DEVELOPMENT OF ANEMIC SYNDROME ASSOCIATED WITH MALIGNANT DISEASES. Russian Journal of Biotherapy. 2020;19(4):29-34. (In Russ.) https://doi.org/10.17650/1726-9784-2020-19-4-29-34