LIPOSOMES AS A TARGETED DELIVERY SYSTEM OF DRUGS (REVIEW)
https://doi.org/10.17650/1726-9784-2021-20-1-33-41
Abstract
Liposomal targeted drug delivery makes it possible to achieve effective concentration in the target cell under various pathological conditions. The main advantage of liposomal particles is their biodegradability and immunological neutrality, which improves the safety profile of drugs. The review provides information on the composition of liposomes: the main component of the liposomal membrane is phospholipids, which provide its strength and protect from mechanical impacts. Liposomal particles are distinguished by the size and number of bilayer membranes, also secreted liposomes with a non‑lamellar organization. The composition and size of liposomes are selected depending on the purpose, including excipients in the membrane that affect the properties and functions of liposomes, including the rate of release of the components, the affinity of liposomes for the target tissue, etc. The review considers the main methods for obtaining liposomes and the features of their use, advantages and disadvantages. The creation of liposomes that are sensitive to various external or internal physicochemical factors makes it possible to realize drugs effects, localize the site of its action and reduce the number and severity of side effects. Currently, liposome‑based drugs are successfully used in various fields of medicine – dermatology, cardiology, oncology, neurology, etc. The most active condact preclinical and clinical studies of liposomal drugs for the treatment of malignant neoplasms. Particular attention is paid to the work of Russian researchers in the field of targeted drug delivery. It is shown that today liposomes are an open for study and improvement system for targeted drug delivery.
About the Authors
V. S. GorbikRussian Federation
Valentina Sergeevna Gorbik
Build. 2, 8 Trubetskaya St., Moscow 119991
Z. S. Shprakh
Russian Federation
Build. 2, 8 Trubetskaya St., Moscow 119991
24 Kashyrskoe Shosse, Moscow 115478
Z. M. Kozlova
Russian Federation
Build. 2, 8 Trubetskaya St., Moscow 119991
V. G. Salova
Russian Federation
Build. 2, 8 Trubetskaya St., Moscow 119991
References
1. Danhier F., Feron O., Préat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 2010;148(2):135–46. DOI: 10.1016/j.jconrel.2010.08.027.
2. Arantseva D.A., Vodovozova E.L. Platinum-based antitumor drugs and their liposomal forms in clinical trials. Russian Journal of Bioorganic Chemistry 2018;44(6):619–30. DOI: 10.1134/S0132342318060040.
3. Allen T.M., Martin F.J. Advantages of liposomal delivery systems for anthracyclines. Semin Oncol 2004;31(13):5–15. DOI: 10.1053/j.seminoncol.2004.08.001.
4. Sriraman S.K., Torchilin V.P. Recent advances with liposomes as drug carriers. Advanced Biomaterials and Biodevices 2014;2:79–119. DOI: 10.1002/9781118774052.ch3.
5. Valent P., Groner B., Schumaher U. et al. Paul Ehrlich (1854–1915) and his contributions to the foundation and birth of translational medicine. J Innate Immun 2016;8(2):111–20. DOI: 10.1159/000443526. PMID: 26845587.
6. Bangham A.D. Physical structure and behavior of lipids and lipid enzymes. Advances in lipid research 1963;1:65–104. DOI: 10.1016/b978-1-4831-9937- 5.50008-9. PMID: 14248958.
7. Cristiano M.C., Cosco D., Celia C. et al. Anticancer activity of all-trans retinoic acid-loaded liposomes on human thyroid carcinoma cells. Colloids and Surfaces B: Biointerfaces 2017;150:408–16. DOI: 10.1016/j.colsurfb.2016.10.052.
8. Park K., Kwon I.C. Oral protein delivery: Current status and future prospect. Reactive and Functional Polymers 2011;71(3):280–7. DOI: 10.1016/ j.reactfunctpolym.2010.10.002.
9. Matsuo H., Wakasugi M., Takanada H. et al. Possibility of the reversal of multidrug resistance and the avoidance of side effects by liposomes modified with MRK-16, a monoclonal antibody to P-glycoprotein. J Control Release 2001;77(2):77–86. DOI: 10.1016/s0168-3659(01)00460-6. PMID: 11689261.
10. Mohammed A.R., Weston N., Coombes A.G.A. et al. Liposome formulation of poorly water soluble drugs: optimisation of drug loading and ESEM analysis of stability. Int J Pharm 2004;285(2):23–34. DOI: 10.1016/j.ijpharm.2004.07.010.
11. Wang C.X., Li C.L., Zhao X. et al. [Pharmacodynamics, pharmacokinetics and tissue distribution of liposomal mitoxantrone hydrochloride] [Article in Chinese]. Yao Xue Xue Bao2010;45(12):1565–9. PMID: 21351498.
12. Inglut C.T., Sorrin A.J., Kuruppu T. et al. Immunological and toxicological considerations for the design of liposomes. Nanomaterials 2020;10(2):190. DOI: 10.3390/nano10020190. PMID: 31978968.
13. Khan A.A., Allemailem K.S., Almatroodi S.A. Recent strategies towards the surface modification of liposomes: an innovative approach for different clinical applications. Biotech 2020;10(4):163. DOI: 10.1007/s13205-020-2144-3. PMID: 32206497.
14. Skubitz K.M., Blaes A.H., Konety S.H. et al. Cardiac safety profile of patients receiving high cumulative doses of pegylated-liposomal doxorubicin: use of left ventricular ejection fraction is of unproven value. Cancer Chemother Pharmacol 2017;80(4):787–98. DOI: 10.1007/s00280-017-3420-8. PMID: 28856562.
15. Kanter P.M., Klaich G., Bullard G.A. et al. Preclinical toxicology study of liposome encapsulated doxorubicin (TLC D-99): Comparison with doxorubicin and empty liposomes in mice and dogs. In Vivo 1994;8(6):975–82. PMID: 7772749.
16. Solomon R., Gabizon A.A. Clinical pharmacology of liposomal anthracyclines: focus on pegylated liposomal doxorubicin. Clin Lymphoma Myelomа 2008;8(1):21–32. DOI: 10.3816/clm.2008.n.001. PMID: 18501085.
17. Akbarzadeh A., Rezaei-Sadabady R., Davaran S. et al. Liposome: classification, preparation, and application. Nanoscale Research Letters 2013;8(1):102. DOI: 10.1186/1556-276X-8-102. PMID: 23432972.
18. Mohamed M., Lila A.S.A., Shimizu T. et al. PEGylated liposomes: immunological responses. Sci Technol Adv Mater 2019;20(1):710–24. DOI: 10.1080/14686996.2019.1627174. PMID: 31275462.
19. Beltrán-Gracia E., Lopez A., HigueraCiapara I. et al. Nanomedicine review: clinical developments in liposomal applications. Cancer Nanotechnology 2019;10(1):1–40. DOI: 10.1186/s12645-019-0055-y.
20. Saraf S., Jain A., Tiwari A. et al. Advances in liposomal drug delivery to cancer: An overview. J Drug Deliv Sci Tech 2020;56:101549. DOI: 10.1016/j.jddst.2020.101549.
21. Lamichhane N., Udayakuma T.S., D’Souza W.D. et al. Liposomes: Clinical Applications and Potential for ImageGuided Drug Delivery. Molecules 2018;23(2):288. DOI: 10.3390/ molecules23020288. PMID: 29385755.
22. Groll A.H., Rijnders B.J.A., Walsh T.G. et al. Clinical pharmacokinetics, pharmacodynamics, safety and efficacy of liposomal amphotericin B. Clin Infect Dis 2019;68(4):260–74. DOI: 10.1093/cid/ciz076. PMID: 31222253.
23. Matsumura Y., Gotoh M., Muro K. et al. Phase I and pharmacokinetic study of MCC-465, a doxorubicin (DXR) encapsulated in PEG immunoliposome, in patients with metastatic stomach cancer. Ann Oncol 2004;15(3):517–25. DOI: 10.1093/annonc/mdh092. PMID: 14998859.
24. Monteiro L.O.F., Malachias A., PoundLana G. et al. Paclitaxel-loaded pH-sensitive liposome: new insights on structural and physicochemical characterization. Langmuir 2018;34(20):5728–37. DOI: 10.1021/acs.langmuir.8b00411.
25. Shen Z., Fisher A., Liu W.K., Li Y. PEGylated ‟stealth” nanoparticles and liposomes. In: Engineering of Biomaterials for Drug Delivery Systems: Beyond Polyethylene Glycol. Woodhead Publishing Series in Biomaterials. Elsevier Inc, 2018. pp.1–26. DOI: 10.1016/ B978-0-08-101750-0.00001-5.
26. Olusanya T.O.B., Ahmad R.R.H., Ibegbu D.M. et al. Liposomal drug delivery systems and anticancer drugs. Molecules 2018;23(4):907. DOI: 10.3390/molecules23040907. PMID: 29662019.
27. Oltarzhevskaja N.D., Krichevskij G.I., Korovina M.A. et al. Methods of Delivery of Medications for the Treatment of Oncological Diseases. Biomedical Chemistry: Research and Methods 2019;2(1):1–11 (In Russ.). DOI: 10.18097/bmcrm00089.
28. Yurkshtovich T.L., Solomevich S.O., Bychkovsky P.M. et al. Investigation of the sorption interactions of the anticancer drug Prospidin with the gel-forming quick-swellable dextran phosphate. Transactions of the Belarusian State University. Ser. Physiological, Biochemical and Molecular Basis of the Functioning of Biosystems. 2013;8(1):260–5.
29. Nkanga C.I., Bapolisi A.M. Okafor N.I., Krause R.W.M. General Perception of Liposomes: Formation, Manufacturing and Applications. In: Liposomes – Advances and Perspectives. Ed. by A. Catala. IntechOpen: London, 2019. DOI: 10.5772/intechopen.84255.
30. Rideau E., Dimova R., Schwille P. et al. Liposomes and polymersomes: a comparative review towards cell mimicking. Chem Soc Rev 2018;47(23): 8572–610. DOI: 10.1039/c8cs00162f. PMID: 30177983.
31. Dianat-Moghadam H., Heidarifard M., Jahanban-Esfahla R. et al. Cancer stem cells-emanated therapy resistance: implications for liposomal drug delivery systems. J Control Release 2018;288:62–83. DOI: 10.1016/j.jconrel.2018.08.043. PMID: 30184466.
32. Choudhury A., Ahmed F.R.S., Hossen M.N. et al. Liposome: a carrier for effective drug delivery. Journal of Applied Pharmaceutical Research 2020;8(1):22–8. DOI: 10.3923/pjbs.2006.1181.1191.
33. Gokce E.H., Korkmaz E., TuncayTanriverdi S. et al. A comparative evaluation of coenzyme Q10-loaded liposomes and solid lipid nanoparticles as dermal antioxidant carriers. Int J Nanomedicine 2012; 7:5109–17. DOI: 10.2147/IJN.S34921.
34. Szoka F., Papahadjopoulos D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse phase. Proc Natl Acad Sci U S A 1978;75:4194–8.
35. Brunner J., Skrabai P., Hauser H. Single bilayer vesicles prepared without sonication. Physicochemical properties. Biochim Biophys Acta 1976;455:322–31.
36. Novikova A.A., Kezimana P., Stanishevskiy Y.M. Methods of obtaining liposomes, used as drug delivery systems (review). Razrabotka i Registratsia Lekarstvennikh Sredstv = Drug Development & Registration 2017;(2):134–8 (In Russ.).
37. Shahmaev A.E., Krasnopolskiy Yu.M., Volchik I.V. et al. Technological principles of obtaining liposomal drugs. Ukrainskiy Biopharmatsevticheskiy Zhurnal = Ukrainian Biopharmaceutical Journal 2012;4(21):4–11. (In Russ.).
38. Kono K., Takashima M., Yuba E. et al. Multifunctional liposomes having target specificity, temperature-triggered release, and near-infrared fluorescence imaging for tumor-specific chemotherapy. J Control Release 2015;216:69–77. DOI: 10.1016/j.jconrel.2015.08.005.
39. Douer D. Efficacy and safety of vincristine sulfate liposome injection in the treatment of adult acute lymphocytic leukemia. The Oncologist 2016; 21(7):840–7. DOI: 10.1634/ theoncologist. PMID: 27328933.
40. Tazina E.V., Mescherikova V.V., Ignatieva E.V. et al. Biopharmaceutical investigations of thermosensitive liposomes loaded with doxorubicin. Rossiyskiy Bioterapevticheskiy Zhurnal = Russian Journal of Biotherapy 2009;8(1):40–7 (In Russ.).
41. Tiwari Sandip B., Udupa N., Rao B.S.S. et al. Thermosensitive liposomes and localised hyperthermia – an effective bimodality approach for tumour management. Indian Journal of Pharmacology 2000;32(3):214–20.
42. Bisby R.H., Mead C., Morgan C.G. Active Uptake of Drugs into Photosensitive Liposomes and Rapid Release on UV Photolysis. Photochem Photobiol 2000;72(1):57–61. DOI: 10.15690/vramn.v67i3.181.
43. Puri A. Phototriggerable liposomes: current research and future perspectives. Pharmaceutics 2014;6(1):1–25. DOI: 10.3390/pharmaceutics6010001. PMID: 24662363.
44. Schroeder A., Avnir Y., Weisman S. et al. Controlling Liposomal Drug Release with Low Frequency Ultrasound: Mechanism and Feasibility. Langmuir 2007;23:4019–25. DOI: 10.1021/la0631668.
45. Yatvin M.B., Kreutz W., Horwitz B.A., Shinitzky M. pH-sensitive liposomes: possible clinical implications. Science 1980;210(4475):1253–5. DOI: 10.1126/science.7434025.
46. Ropert C. Liposomes as a gene delivery system. Braz J Med Biol Res 1999;32(2):163–9. DOI: 10.1590/ S0100-879X1999000200004.
47. Li Y., Liu R., Yang J. et al. Dual sensitive and temporally controlled camptothecin prodrug liposomes codelivery of siRNA for high efficiency tumor therapy. Biomaterials 2014;35(36):9731–45. DOI: 10.1016/j.biomaterials.2014.08.022.
48. Krasnopolskii Y.M., Grigoreva A.S., Katsai O. et al. Technologies and perspectives of liposomal drug application in clinical practice. Nanotechnologies in Russia 2017;12(7–8):461–70. DOI: 10.1134/S1995078017040139.
49. Safra T. Cardiac safety of liposomal anthracyclines. The Oncologist 2003;8: 17–24. DOI: 10.1634/theoncologist.8- suppl_2-17. PMID: 13679592.
50. Krauss A.C., Gao X., Li L. et al. FDA approval summary: (daunorubicin and cytarabine) liposome for injection for the treatment of adults with high-risk acute myeloid leukemia. Clin Cancer Res 2019;25(9):2685–90. DOI: 10.1158/1078-0432.CCR-18-2990. PMID: 30541745.
51. Said R., Tsimberidou A.M. Pharmacokinetic evaluation of vincristine for the treatment of lymphoid malignancies. Expert Opin Drug Metab Toxicol 2014;10(3):483–94. DOI: 10.1517/17425255.2014.885016.
52. Blair H.A. Daunorubicin/Cytarabine Liposome: A review in acute myeloid leukaemia. Drugs 2018;78(18):1903–10. DOI: 10.1007/s40265-018-1022-3. PMID: 30511323.
53. Larson J.L., Wallace T.L., Tyl R.W. et al. The reproductive and developmental toxicity of the antifungal drug Nyotran® (liposomal nystatin) in rats and rabbits. Toxicol Sci 2000;53(2):421–9. DOI: 10.1093/toxsci/53.2.421.
54. Wang Y., Grainger D.W. Lyophilized liposome-based parenteral drug development: Reviewing complex product design strategies and current regulatory environments. Adv Drug Deliv Rev 2019;151:56–71. DOI: 10.1016/j.addr.2019.03.003.
55. Rizvi I., Nath S., Obaid G. et al. A com bination of visudyne and a lipid anchored liposomal formulation of benzoporphyrin derivative enhances photodynamic therapy efficacy in a 3D model for ovarian cancer. Photochem Photobiol 2019;95(1): 419–29. DOI: 10.1111/php.13066. PMID: 30499113.
56. Gupta A.Z., Mandal M.K., Singh B. et al. Liposomes: Current Approaches for Development and Evaluation. International Journal of Drug Delivery Technology 2017;7(4):269–75. DOI: 10.25258/ijddt.v7i04.10649.
57. Tretiakova D., Svirshchevskaya E., Onishchenko N. et al. Liposomal Formulation of a Melphalan Lipophilic Prodrug: Studies of Acute Toxicity, Tolerability, and Antitumor Efficacy Curr Drug Deliv 2020;17(4):312–23. DOI: 10.2174/1567201817666200214105357.
58. Lapenkova M.B., Alyapkina Yu.S., Vladimirsky M.A. Bactericidal Activity of Liposomal Form of Lytic Mycobacteriophage D29 in Cell Models of Tuberculosis Infection In Vitro. Bull Exp Biol Med 2020;169(3):361–4. DOI: 10.1007/s10517-020-04887-6. PMID: 32743783.
59. Gaydukevich S.K., Mikulovich Y.L., Smirnova T.G. et al. Antibacterial action of liposomes containing phospholipid cardiolipin and fluoroquinolone levofloxacin on Mycobacterium tuberculosis with broad drug-resistant. Bulleten Eksperimentalnoy Biologii i Meditsini = Bulletin of Experimental Biology and Medicine 2015;160(11):626–30. (In Russ.)
60. Lantsova A.V., Borisova L.M., Meerovich G. et al. Analysis of Antitumor Activity of the Liposomal Photosensitizer Lipophthalocyan. Bull Exp Biol Med 2020;168(3):361–5. DOI: 10.1007/s10517-020-04709-9.
61. Shchelkogonov V.A., Alyaseva S.O., Lotosh N.Yu. Lipoic acid nanoforms based on phosphatidylcholine: production and characteristics. Eur Biophys J 2020;49(1):95–103. DOI: 10.1007/s00249-019-01415-x.
62. Alekseeva A.A., Moiseeva E.V., Onishchenko N.R. et al. Liposomal formulation of a methotrexate lipophilic prodrug: assessment in tumor cells and mouse T-cell leukemic lymphoma. Int J Nanomedicine 2017;12:3735–49. DOI: 10.2147/IJN.S145516. PMID: 28553111.
63. Tretiakova D.S., Khaidukov S.V., Babayants A.A. et al. Lipophilic Prodrug of Methotrexate in the Membrane of Liposomes Promotes Their Uptake by Human Blood Phagocytes. Acta Naturae 2020;12(1):99–109. DOI: 10.32607/ actanaturae.10946. PMID: 32477604.
64. Shprakh Z.S., Yartseva I.V., Ignateva E.V. et al. Synthesis and chemico-pharmaceutical characteristics of somatostatin analog with antitumor activity. Pharmaceut Chem J 2014;3:159–62. DOI: 10.1007/s11094-014-1069-8.
65. Dmitrieva M.V., Sanarova E.V., Smirnova L.I. et al. Agent for treating hormone-dependent tumors and the method of production there of. RU 2703533 C1 (In Russ.).
66. Sanarova E.V., Lantsova A.E., Michaevich E.I. et al. The prospect of the creation of a dosage form of domestic analogue of hypothalamic hormone somatostatin in the treatment of hormone-dependent tumors. Biofarmatsevticheskiy Zhurnal = Russion Journal of Biopharmaseuticals 2016;8(2):13–8 (In Russ.).
67. Sanarova E., Lantsova A., Oborotova N. et al. Development of a Liposomal Dosage Form for a New Somatostatin Analogue. Indian J Pharmaceut Sci 2019;81(1):146–9. DOI: 10.4172/ pharmaceutical-sciences.1000490.
68. Mukhamadiyarov R.A., Senokosova E.A., Krutitsky S.S. et al. Size-Dependent Ability of Liposomes to Accumulate in the Ischemic Myocardium and Protect the Heart. J Cardiovasc Pharmacol 2018;72(3):143–52. DOI: 10.1097/FJC.0000000000000606. PMID: 29927783.
69. Sokolova D.V., Tazina E.V., Kortava M.A. et al. Anti-CD20 and anti-HLA-DR immunoliposomal forms of doxorubicin: production technology and antigen specificity in vivo. Rossiyskiy Bioterapevticheskiy Zhurnal = Russian Journal of Biotherapy 2010;9(2):90 (In Russ.).
70. Eloy J.O., Petrilli R., Trevizan L.N.F., Chorilli M. Immunoliposomes: A review on functionalization strategies and targets for drug delivery. Colloids and Surfaces B: Biointerfaces 2017;159:454–67. DOI: 10.1016/j.colsurfb.2017.07.085. PMID: 28837895.
71. Hashem A., Matyushin A.A., Raikov A.O. et al. Development of immunoliposomes loaded with photosens. Rossiyskiy Bioterapevticheskiy Zhurnal = Russian Journal of Biotherapy 2016;15(1):113 (In Russ.).
72. Database of privately and publicly funded clinical studies conducted around the world. Available at: https://clinicaltrials.gov.
Review
For citations:
Gorbik V.S., Shprakh Z.S., Kozlova Z.M., Salova V.G. LIPOSOMES AS A TARGETED DELIVERY SYSTEM OF DRUGS (REVIEW). Russian Journal of Biotherapy. 2021;20(1):33-41. (In Russ.) https://doi.org/10.17650/1726-9784-2021-20-1-33-41