Adhesion concept in cancer biology: local and central mechanisms (part 2)
https://doi.org/10.17650/1726-9784-2021-20-4-42-50
Abstract
The review presents the concept the key mechanism of the tumor process is a violation of adhesion interactions involving local and central mechanisms. Local features of adhesive dysregulation are demonstrated in the part 1.
The second part describes the central processes. Features of local adhesive dysregulation which provides the main properties of the tumor (loss of tissue control of proliferation, anaplasia, invasion, metastasis, lack of immunological surveillance) can be controlled by central mechanisms involving the dopaminergic system which is able using immunoadhesional interactions to regulate the active phase of immune responses against the tumor interfering the process and thus interrupting the development of a malignant neoplasm initiated by a local mutation in the target tissue. The proposed concept of the adhesion key role dysregulation in the target tissue neoplasia and the processes of immunoreactivity involving the loss of central dopamine as an adhesive-damaging factor at the level of immune responses reveals among other things the stress mechanism of cancer etiology. At the same time, the central dopamine directly affects the level of dopamine in the peripheral body. The main reserves of peripheral dopamine in platelets and blood lymphocytes can serve as a guarantee of antitumor protection. Being the production of lymphocytes peripheral dopamine plays a role in the maturation of cytotoxic lymphocytes promoting their migration to tumor nodes, the formation of conjugates with tumor cells. So, dopamine participates in the active phase of immune responses against the tumor contributing to the support of adhesive interactions between immune effectors and target cells. The latter also helps to protect the body from tumor diseases which obviously shorten life.
The adhesive concept of local and central control of tumor formation creates a certain perspective for improving the effectiveness of diagnosticis, prevention and treatment methods which can be a step towards solving the problem of malignant neoplasms.
Keywords
About the Authors
O. A. BocharovaRussian Federation
Olga Alekseevna Bocharova
24 Kashirskoe Shosse, Moscow 115478
V. B. Matveev
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
E. V. Bocharov
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
R. V. Karpova
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
V. G. Kucheryanu
Russian Federation
8 Baltiyskaya St., Moscow 125315
References
1. Bocharova O.A., Bocharov E.V., Kucheryanu V.G. et al. Dopaminergic system: stress, depression, cancer (part 1). Rossiysky Bioterapevtichesky Zhurnal = Russian Journal of Biotherapy 2019;18(3):6–14. (In Russ.). DOI: 10.17650/1726-9784-2019-18-3-6-14.
2. Bocharova O.A., Bocharov E.V., Kucheryanu V.G. Dopaminergic system: stress, depression, cancer (part 2). Rossiysky Bioterapevtichesky Zhurnal = Russian Journal of Biotherapy 2019;18(4):25–33. (In Russ.). DOI: 10.17650/1726-9784-2019-18-4-25-33.
3. Rollo C.D. Dopamine and aging: intersecting facets. Neurochem Res 2009;34(4):601–29. DOI: 10.1007/s11064-008-9858-7.
4. Iversen S.D., Iversen L.L. Dopamin: 50 years in perspective. Trends Neurosci 2007;30(5):188–93. DOI: 10.1016/j.tins.2007.03.002.
5. Bjorklund A., Dunnet S.B. Dopamine neuron systems in the brain: an update. Trends Neurocsi 2007;30(5):194–202. DOI: 10.1016/j.tins.2007.03.006.
6. Rangel-Barajas C., Coronel I., Floran B. Dopamine receptors and neurodegeneration. Aging Dis 2015;6(5):349–68. DOI: 10.14336/AD.2015.0330.
7. Gibb W.R., Lees A.J. Anatomy, pigmentation, ventral and dorsal subpopulations of the substantia nigra, and differential cell death in Parkinson’s disease. J Neurol Neurosurg Psychiatry 1991;54(5):388–96.
8. Reeves S., Bench C., Howard R. Ageing and the nigrostriatal dopaminergic system. Int J Geriatr Psychiatry 2002;17(4):359–70. DOI: 10.1002/gps.606.
9. Bäckman L., Nyberg L., Lindenberger U. et al. The correlative triad among aging, dopamine, and cognition: Current status and future prospects. Neurosci Biobehav Rev 2006;30(6):791–807. DOI: 10.1016/j.neubiorev.2006.06.005.
10. Kubis N., Faucheux B.A., Ransmayr G. Preservation of midbrain catecholaminergic neurons in very old human subjects. Brain 2000;123(Pt 2):366–73. DOI: 10.1093/brain/123.2.366.
11. Porcelli S., Drago A., Fabbri C., Serretti A . Mechanisms of antidepressant action: an integrated dopaminergic perspective. Prog Neuropsychopharmacol Biol Psychiatry 2011;35(7):1532–43. DOI: 10.1016/j.pnpbp.2011.03.005.
12. Kim D.H., Li H., Yoo K.Y. Effects of fluoxetine on ischemic cells and expressions in BDNF and some antioxidants in the gerbil hippocampal CA1 region induced by transient ischemia. Exp Neurol 2007;204(2):748–58. DOI: 10.1016/j.expneurol.2007.01.008.
13. Lucassen P.J., Fuchs E., Czeh B. Antidepressant treatment with tianeptine reduces apoptosis in the hippocampal dentate gyrus and temporal cortex. Biol Psychiatry 2004;55(8):789–96. DOI: 10.1016/j.biopsych.2003.12.014.
14. Weaver I.C., Champagne F.A., Brown S.E. Reversal of maternal programming of stress responses in adult of spring through methyl supplementation: altering epigenetic marking later in life. J Neurosci 2005;25(47):11045–54. DOI: 10.1523/JNEUROSCI.3652-05.2005.
15. Aragona B.J., Liu Y., Yu Y.J. et al. Nucleus accumbens dopamine differentially mediates the formation and maintenance of monogamous pair bonds. Nature Neurosci 2006;9(1):133–9. DOI: 10.1038/nn1613.
16. Pittenger C., Duman R.S. Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology 2008;33(1):88–109. DOI: 10.1038/sj.npp.1301574.
17. Chakroborty D., Sarkar C., Basu B. Catecholamines regulate tumor angiogenesis. Cancer Res 2009;69(9):3727–30. DOI: 10.1158/0008-5472.CAN-08-4289.
18. Moreno-Smith M., Lu C., Shahzad M.M. Dopamine blocks stress-mediated ovarian carcinoma growth. Clin Cancer Res 2011;17(11):3649–59. DOI: 10.1158/1078-0432.CCR-10-2441.
19. Chakroborty D., Chowdhury U.R., Sarkar C. Dopamine regulates endothelial progenitor cell mobilization from mouse bone marrow in tumor vascularization. J Clin Invest 2008;118(4):1380–9. DOI: 10.1172/JCI33125.
20. Basu S., Sarkar C., Chakroborty D. et al. Ablation of peripheral dopaminergic nerves stimulates malignant tumor growth by inducing vascular permeability factor/vascular endothelial growth factor-mediated angiogenesis. Cancer Res 2004;64(16):5551–5. DOI: 10.1158/0008-5472.CAN-04-1600.
21. Sarkar C., Chakroborty D., Mitra R.B. Dopamine in vivo inhibits VEGF-induced phosphorylation of VEGFR-2, MAPK, and focal adhesion kinase in endothelial cells. Am J Physiol Heart Circ Physiol 2004;287(4):1554–60. DOI: 10.1152/ajpheart.00272.2004.
22. Basu S., Dasgupta P.S. Decreased dopamine receptor expression and its second-messenger AMP in malignant human colon tissue. Dig Dis Sci 1999;44(5):916–21.
23. Chakroborty D., Sarkar C., Mitra R.B. Depleted dopamine in gastric cancer tissues: dopamine treatment retards growth of gastric cancer by inhibiting angiogenesis. Clin Cancer Res 2004;10(13):4349–56. DOI: 10.1158/1078-0432.CCR-04-0059.
24. Wick M.M. The chemotherapy of malignant melanoma. J Invest Dermatol 1983;80(1):61–2. DOI: 10.1038/jid.1983.16.
25. Sarkar C., Basu B., Chakroborty D. et al. The immunoregulatory role of dopamine: an update. Brain Behave Immun 2010;24(4):525–8. DOI: 10.1016/j.bbi.2009.10.015.
26. Pacheco-Lópes G., Niemi M.B., Kou W. Central catecholamin depletion inhibits peripheral lymphocyte responsiveness in spleen and blood. J Neurochem 2003;86(4):1024–31. DOI: 10.1046/j.1471-4159.2003.01914.x.
27. Won S.J., Chuang Y.C., Huang W.T. Suppression of natural killer cell activity in mouse spleen lymphocytes by several dopamine receptor antagonists. Experientia 1995;51(4):343–8. DOI: 10.1007/BF01928892.
28. Magnini F., Sabbatini M., Capacchietti M. T-cell subpopulations express a different pattern of dopaminergic markers in intra- and extra-thymic compartments. J Biol Regul Homeost Agents 2013;27(2):463–75.
29. Al’perina E.L., Bocharov E.V., Bocharova O.A. et al. Actual problems of neuroimmunopathology: a guid. Ed. by: G.N. Kryzhanovsky, S.V. Magaeva, S.G. Morozov. Moscow: Genius-media, 2012. Pp. 131–147 (In Russ.).
30. Bocharov E.V., Kucheryanu V.G., Kryzhanovskii G.N. et al. Effect of phytoadaptogene complex on MFTP-induced parkinsonian syndrome in mice. Bull Exp Biol Med 2006;141(5):560–3. DOI: 10.1007/s10517-006-0220-2.
31. Papa I., Saliba D., Ponzoni M. et al. TFH-derived dopamine accelerates productive synapses in germinal centres. Nature 2017;547(7663):318–23. DOI: 10.1038/nature23013.
32. Herrera-Rincon C., Paré J.-F., Martyniuk C.J. et al. An in vivo brain-bacteria interface: the developing brain as a key regulator of innate immunity. NPJ Regenerative Medicine 2020;5(2):1–18. DOI: 10.1038/s41536-020-0087-2.
33. Schiller M., Ben-Shaanan T.L., Rolls A. Neuronal regulation of immunity: why, how and where? Nat Rev Immunol 2021;21(1):20–36. DOI: 10.1038/s41577-020-0387-1.
34. Devoino L.V., Idova G.V., Alperina E.L. Neurotransmitter systems of the brain in modulating the immune response (dopamine, serotonin, GABA). Neyroimmunologiya = Neuroimmunology 2005;3(1):11–8 (In Russ.).
35. Beatty P.L., Cascio S., Lutz E. Tumor immunology: basic and clinical advances. Cancer Res 2011;71(13):4338–43. DOI: 10.1158/0008-5472.CAN-11-0717.
36. Van der Horst P.H., Wang Y., Vandenput I. et al. Progesterone inhibits epithelial-to-mesenchymal transition in endometrial cancer. PLoS One 2012;7(1):e30840. DOI: 10.1371/journal.pone.0030840.
37. Wu R.C., Liu S., Chacon J.A. Detection and characterization of a novel subset of CD8+ CD57 + T cells in metastatic melanoma with an incompletely differentiated phenotype. Clin Cancer Res 2012;18(9):2465–77. DOI: 10.1158/1078-0432.CCR-11-2034.
38. Zhang G., Xu Y., Zhou H. The Infiltration of ICOS+ Cells in Nasopharyngeal Carcinoma is Beneficial for Improved Prognosis. Pathol Oncol Res 2020;26(1):365–70. DOI: 10.1007/s12253-018-0509-2.
Review
For citations:
Bocharova O.A., Matveev V.B., Bocharov E.V., Karpova R.V., Kucheryanu V.G. Adhesion concept in cancer biology: local and central mechanisms (part 2). Russian Journal of Biotherapy. 2021;20(4):42-50. (In Russ.) https://doi.org/10.17650/1726-9784-2021-20-4-42-50