Preview

Russian Journal of Biotherapy

Advanced search

CD437 increases the iron uptake by metastatic melanoma cells

https://doi.org/10.17650/1726-9784-2022-21-3-34-39

Abstract

Background. CD437, an analog of vitamin A, is an agonist of the retinoic acid γ-receptor (RARγ). CD437 is also known to cause p53-independent DNA damage by a mechanism independent of the RAR-mediated pathway. In cancer patients, iron deficiency is constantly detect, the delivery of iron to tissues is also destroyed.
Aim. To study the effect of CD437 on iron metabolism in metastatic melanoma cells, Mel Z.
Materials and methods. In this study 2D cultivation of metastatic Mel Z melanoma cells, phase-contrast and fluorescence microscopy, flow cytofluorimetry were used.
Results. In control cells without the addition of CD437 CD71, transferrin receptor, expressed 40 ± 4 % (p <0.05) of Mel Z cells, in the presence of CD437 CD71 expression increased to 80 ± 6 %. Next, we have studied the expression of ferritin. Iron, which is not involved in cell metabolism, is bound by ferritin. In control experiments, ferritin was expressed by 84 ± 6 % (p <0.05) of cells. When the cells grew in the presence of CD437, ferritin was expressed by all the cells (100 %, p <0.05). Such a scenario indicates that CD437 may contribute to the accumulation of free, unbound iron in the cell, which can induce ferroptosis. In control experiments without the addition of CD437, the level of membranes lipid peroxidation, an indicator of ferroptosis, was insignificant. Lipid peroxidation induced by CD437 was 55 ± 5 % (p <0.05) of the fluorescence intensity induced by erastin, positive control.
Conclusion. CD437 increases the iron uptake by metastatic melanoma cells. The low level of membranes lipid peroxidation induced by CD437 does not allow it to be considered as an inducer of ferroptosis. Additional investigations are needed to find iron-binding targets alternative to ferritin.

About the Authors

A. A. Vartanian
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

Amalia Artashevna Vartanian

24 Kashirskoe Shosse, Moscow 115522



Yu. A. Khochenkova
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

24 Kashirskoe Shosse, Moscow 115522



V. S. Kosorukov
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

24 Kashirskoe Shosse, Moscow 115522



References

1. Alvarez S., Bourguet W., Gronemeyer H., de Lera A.R. Retinoic acid receptor modulators: a perspective on recent advances and promises. Expert Opin Ther Pat 2011;21(1):55–63. DOI: 10.1517/13543776.2011.536531

2. Han T., Goralski M., Capota E. et al. The antitumor toxin CD437 is a direct inhibitor of DNA polymerase α. Nat Chem Biol 2016;12(7):511–5. DOI: 10.1038/nchembio.2082

3. di Masi A., Leboffe L., De Marinis E. et al. Retinoic acid receptors: from molecular mechanisms to cancer therapy. Mol Aspects Med 2015;41:1–115. DOI: 10.1016/j.mam.2014.12.003

4. Langdon S.P., Rabiasz G.J., Ritchie A.A. et al. Growth-inhibitory effects of the synthetic retinoid CD437 against ovarian carcinoma models in vitro and in vivo. Cancer Chemother Pharmacol 1998;42(5):429–32. DOI: 10.1007/s002800050841

5. Doldo E., Costanza G., Agostinelli S. et al. Vitamin A, cancer treatment and prevention: the new role of cellular retinol binding proteins. Biomed Res Int 2015;2015:624627. DOI: 10.1155/2015/624627

6. Shyu R.Y., Lin D.Y., Reichert U., Jiang S.Y. Synthetic retinoid CD437 induces cell dependent cycle arrest by differential regulation of cell cycle associated proteins. Anticancer Res 2002;22(5):2757–64. PMID: 12529993.

7. Zhao X., Demary K., Wong L. et al. C. Retinoic acid receptorindependent mechanism of apoptosis of melanoma cells by the retinoid CD437 (AHPN). Cell Death Differ 2001;8(9):878–86. DOI: 10.1038/sj.cdd.4400894

8. Zhao X., Spanjaard R.A. The apoptotic action of the retinoid CD437/AHPN: diverse effects, common basis. J Biomed Sci 2003:10(1):44–50. DOI: 10.1007/BF02255996

9. Lotan R. Receptor-independent induction of apoptosis by synthetic retinoids. J Biol Regul Homeost Agents 2003;17(1): 13–28. PMID: 12757019

10. Vartanian A.A., Khochenkova Yu.A., Kosobokova E.N. et al. CD437 reduces metastatic potential of melanoma cells. Vestnik Moscovscogo Universiteta. Seriya 2: Himiya = Moscow University Chemistry Bulletin 2021;62(4):10–7. (In Russ.).

11. Ludwig H., Evstatiev R., Kornek G. et al. Iron metabolism and iron supplementation in cancer patients. Wien Klin Wochenschr 2015;127(23–24):907–19. DOI: 10.1007/s00508-015-0842-3

12. Gozzelino R., Arosio P. Iron homeostasis in health and disease. Int J Mol Sci 2016;17(1):E130–Е8. DOI: 10.3390/ijms17010130

13. Zhang D.L., Ghosh M.C., Rouault T.A. The physiological functions of iron regulatory proteins in iron homeostasis – an update. Front Pharmacol 2014;5:124–9. DOI: 10.3389/fphar.2014.00124

14. Jozwiakowski S.K., Kummer S., Gari K. Human DNA polymerase delta requires an iron-sulfur cluster for high-fidelity DNA synthesis. Life Sci Alliance 2019;2(4):e201900321. DOI: 10.26508/lsa.201900321

15. Kleingardner J.G., Bren K.L. Biological significance and applications of heme proteins and peptides. Acc Chem Res 2015;48(7):1845–52. DOI: 10.1021/acs.accounts.5b00106

16. Paul B.T., Manz D.H., Torti F.M., Torti S.V. Mitochondria and iron: current questions. Expert Rev Hematol 2017;10(1):65–79. DOI: 10.1080/17474086.2016.1268047

17. Shen Y., Li X., Dong D. et al. Transferrin receptor 1 in cancer: a new sight for cancer therapy. Am J Cancer Res 2018;8(6):916–31. PMID: 30034931

18. Habashy H.O., Powe D.G., Staka C.M. et al. Transferrin receptor (CD71) is a marker of poor prognosis in breast cancer and can predict response to tamoxifen. Breast Cancer Res Treat 2010;119(2):283–93. DOI: 10.1007/s10549-009-0345-x

19. Bitonto V., Alberti D., Ruiu R. et al. L-ferritin: a theranostic agent of natural origin for MRI visualization and treatment of breast cancer. J Control Release 2020;319:300–10. DOI: 10.1016/j.jconrel.2019.12.051

20. Dixon S.J., Lemberg K.M., Lamprecht M.R. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 2012;149(5):1060–72. DOI: 10.1016/j.cell.2012.03.042

21. Damsky W.E., Theodosakis N., Bosenberg M. Melanoma metastasis: new concepts and evolving paradigms. Oncogene 2014;33(19):2413–18. DOI: 10.1038/onc.2013.194

22. Simon A., Kourie H.R., Kerger J. Is there still a role for cytotoxic chemotherapy after targeted therapy and immunotherapy in metastatic melanoma? A case report and literature review. Chin J Cancer 2017;36(1):10. DOI: 10.1186/s40880-017-0179-6

23. Li J., Cao F., Yin H.L. et al. Ferroptosis: past, present and future. Cell Death Dis 2020;11(2):88. DOI: 10.1038/s41419-020-2298-2

24. Yang W.S., Stockwell B.R. Ferroptosis: death by lipid peroxidation. Trends Cell Biol 2016;26(3):165–76. DOI: 10.1016/j.tcb.2015.10.014

25. Vartanian A.A., Osipov V.N., Khochenkov D.A. et al. Quinazoline derivatives inducing ferroptosis in metastatic melanoma cells and colon cancer. Patent of Invention RU 2722308 C1, 2020. (In Russ.)


Review

For citations:


Vartanian A.A., Khochenkova Yu.A., Kosorukov V.S. CD437 increases the iron uptake by metastatic melanoma cells. Russian Journal of Biotherapy. 2022;21(3):34-39. (In Russ.) https://doi.org/10.17650/1726-9784-2022-21-3-34-39

Views: 438


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1726-9784 (Print)
ISSN 1726-9792 (Online)