Preview

Russian Journal of Biotherapy

Advanced search

Comparison of Ridostin Pro and Poly(I:C) as adjuvant for a cancer neoantigen peptide vaccine

https://doi.org/10.17650/1726-9784-2022-21-3-82-89

Abstract

Background. The effectiveness of cancer neoantigen peptide vaccines depends on the presence of an adjuvant in their composition. Poly(I:C), a TRL-3 agonist, is used as an adjuvant in mouse models of cancer vaccines, but has limitations for use in humans. Therefore, the search for new effective adjuvants for inclusion in the composition of cancer neoantigen peptide vaccine is relevant. Ridostin Pro is a domestic drug that contains a natural complex of sodium salts of double-chiral and single-chiral ribonucleic acids, is an agonist of TLR-3, an inducer of interferon, its antiviral activity is shown. In this regard, the study of Ridostin Pro as an adjuvant in the composition of neoantigen peptide vaccines is of interest.
Aim. To evaluate the ability of Ridostin Pro and Poly(I:C) adjuvants enhance the specific T-cell response to neoantigen synthetic peptides; to study the antitumor efficacy of a neoantigen peptide vaccine with Ridostin Pro or Poly(I:C) adjuvants.
Materials and methods. Immunogenicity of peptides after vaccination with Ridostin Pro or Poly(I:C) adjuvants evaluated with ELISpot. Antitumor effect of Ridostin Pro or Poly(I:C) adjuvants were evaluated on a mouse model of the B16-F10 tumor by the effect on the tumor growth rate and survival of mice.
Results. Vaccination of mice with Ridostin Pro or Poly(I:C) with neoantigen peptides contributed to the appearance of a specific immune response to peptides that were part of the vaccine. Ridostin Pro, both as part of a vaccine model and when administered without a peptide, inhibits tumor growth and increases the life expectancy of mice with melanoma B16-F10.
Conclusion. Ridostin Pro promotes the formation of a specific immune response to the peptide vaccine, enhances the antitumor effect of the vaccine. These results confirm that Ridostin Pro may prove to be an effective adjuvant for personalized neoantigen peptide vaccines.

About the Authors

M. A. Baryshnikova
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

24 Kashirskoe Shosse, Moscow 115522



A. V. Ponomarev
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

Alexander Vasilievich Ponomarev

24 Kashirskoe Shosse, Moscow 115522



A. A. Rudakova
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

24 Kashirskoe Shosse, Moscow 115522



Z. A. Sokolova
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

24 Kashirskoe Shosse, Moscow 115522



N. V. Golubtsova
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

24 Kashirskoe Shosse, Moscow 115522



P. V. Tsarapaev
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

24 Kashirskoe Shosse, Moscow 115522



G. M. Levagina
Institute of Medical Biotechnology of the State Scientific Center of Virology and Biotechnology “Vektor”
Russian Federation

9 Khimzavodskaya St., Berdsk, Novosibirsk region 630010



E. D. Danilenko
Institute of Medical Biotechnology of the State Scientific Center of Virology and Biotechnology “Vektor”
Russian Federation

9 Khimzavodskaya St., Berdsk, Novosibirsk region 630010



V. S. Kosorukov
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

24 Kashirskoe Shosse, Moscow 115522



References

1. Baryshnikova M.A., Kosobokova E.N., Kosorukov V.S. Neoantigens in tumor immunotherapy. Rossiyskiy bioterapevticheskiy zhurnal = Russian Journal of Biotherapy 2018;17(2):6–14. (In Russ.). DOI: 10.17650/1726-9784-2018-17-2-6-14

2. Gouttefangeas C., Rammensee H.-G. Personalized cancer vaccines: adjuvants are important, too. Cancer Immunol Immunother 2018;67(12):1911–8. DOI: 10.1007/s00262-018-2158-4

3. Baryshnikova M.A., Kosorukov V.S. Cancer vaccine adjuvants. Rossiyskiy bioterapevticheskiy zhurnal = Russian Journal of Biotherapy 2018;17(4):36–44. (In Russ.). DOI: 10.17650/1726-9784-2018-17-4-36-44

4. Matsumoto M., Seya T. TLR3: interferon induction by doublestranded RNA including poly(I:C). Adv Drug Deliv Rev 2008;60(7):805–12. DOI: 10.1016/j.addr.2007.11.005

5. Levine A.S., Levy H.B. Phase I–II trials of poly IC stabilized with poly-L-lysine. Cancer Treat Rep 1978;62(11):1907–12.

6. Ammi R., De Waele J., Willemen Y. et al. Poly(I:C) as cancer vaccine adjuvant: knocking on the door of medical breakthroughs. Pharmacol Ther 2015;146:120–31. DOI: 10.1016/j.pharmthera.2014.09.010

7. Jasani B., Navabi H., Adams M. Ampligen: a potential toll-like 3 receptor adjuvant for immunotherapy of cancer. Vaccine 2009;27(25–26):3401–4. DOI: 10.1016/j.vaccine.2009.01.071

8. Sultan H., Salazar A.M., Celis E. Poly-ICLC, a multi-functional immune modulator for treating cancer. Semin Immunol 2020;49:101414. DOI: 10.1016/j.smim.2020.101414

9. Gürtler C., Bowie A.G. Innate immune detection of microbial nucleic acids. Trends Microbiol 2013;21(8):413–20. DOI: 10.1016/j.tim.2013.04.004

10. Akazawa T., Ebihara T., Okuno M. Antitumor NK activation induced by the Toll-like receptor 3-TICAM-1 (TRIF) pathway in myeloid dendritic cells. Proc Natl Acad Sci U S A 2007;104(1):252–7. DOI: 10.1073/pnas.0605978104

11. Azuma M., Ebihara T., Oshiumi H. Cross-priming for antitumor CTL induced by soluble Ag + polyI:C depends on the TICAM-1 pathway in mouse CD11c(+)/CD8α(+) dendritic cells. Oncoimmunology 2012;1(5):581–92. DOI: 10.4161/onci.19893

12. Robinson R.A., DeVita V.T., Levy H.B. et al. A phase I–II trial of multiple-dose polyriboinosic-polyribocytidylic acid in patients with leukemia or solid tumors. J Natl Cancer Inst 1976;57(3): 599–602. DOI: 10.1093/jnci/57.3.599

13. Levy H.B., Baer G., Baron S. et al. A modified polyriboinosinicpolyribocytidylic acid complex that induces interferon in primates. J Infect Dis 1975;132(4):434–9. DOI: 10.1093/infdis/132.4.434

14. Maluish A.E., Reid J.W., Crisp E.A. et al. Immunomodulatory effects of poly(I,C)-LC in cancer patients. J Biol Response Mod 1985;4(6):656–63.

15. Salazar A.M., Levy H.B., Ondra S. et al. Long-term treatment of malignant gliomas with intramuscularly administered polyinosinic-polycytidylic acid stabilized with polylysine and carboxymethylcellulose: an open pilot study. Neurosurgery 1996;38(6):1096–103; discussion 1103–4.

16. Ott P.A., Hu Z., Keskin D.B. et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 2017;547(7662):217–21. DOI: 10.1038/nature22991

17. Ott P.A., Hu-Lieskovan S., Chmielowski B. et al. A phase Ib trial of personalized neoantigen therapy plus anti-PD-1 in patients with advanced melanoma, non-small cell lung cancer, or bladder cancer. Cell 2020;183(2):347–362.e24. DOI: 10.1016/j.cell.2020.08.053

18. Masycheva V.I., Sazonov V.S., Morozova E.N. et al. Toxic properties of double-chiral RNA of virus-like particles of killer yeast Saccharomyces cerevisiae. Antibiotiki i meditsinskaya biotehnologiya = Antibiotics and medical biotechnology 1986;5:374–8.

19. Kosorukov V.S., Baryshnikova M.A., Kosobokova E.N. et al. Identification of immunogenic mutant neoantigens in the genome of murine melanoma. Rossiyskiy bioterapevticheskiy zhurnal = Russian Journal of Biotherapy 2019;18(3):23–30. (In Russ.). DOI: 10.17650/1726-9784-2019-18-3-23-30

20. Baryshnikova M.A., Rudakova A.A., Sokolova Z.A. et al. Evaluation of the antitumor efficacy of synthetic neoantigen peptides for the melanoma vaccine model. Rossiyskiy bioterapevticheskiy zhurnal = Russian Journal of Biotherapy 2019;18(4): 76–81. (In Russ.). DOI: 10.17650/1726-9784-2019-18-4-76-81

21. Rudakova A.A., Baryshnikova M.A., Sokolova Z.A. et al. Evaluation of immunogenicity of synthetic neoantigen peptides for the melanoma vaccine model. Rossiyskiy bioterapevticheskiy zhurnal = Russian Journal of Biotherapy 2021;20(2):61–8. (In Russ.). DOI: 10.17650/1726-9784-2021-20-2-61-68

22. Ponomarev A.V., Rudakova A.A., Sokolova Z.A. et al. Effect of Poly(I:C) and melanoma B16-F10 on the immunophenotype of murine spleen cells. Rossiyskiy bioterapevticheskiy zhurnal = Russian Journal of Biotherapy 2021;20(4):51–8. (In Russ.). DOI: 10.17650/1726-9784-2021-20-4-51-58

23. Sultan H., Fesenkova V.I., Addis D. et al. Designing therapeutic cancer vaccines by mimicking viral infections. Cancer Immunol Immunother 2017;66(2):203–13. DOI: 10.1007/s00262-016-1834-5

24. Castle J.C., Kreiter S., Diekmann J. et al. Exploiting the mutanome for tumor vaccination. Cancer Res 2012;75(5):1081–90. DOI: 10.1158/0008-5472.CAN-11-3722

25. Heil F., Hemmi H., Hochrein H. et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 2004;303(5663):1526–9. DOI: 10.1126/science.1093620

26. Vasilakos J.P., Tomai M.A. The use of Toll-like receptor 7/8 agonists as vaccine adjuvants. Expert Rev Vaccines 2013;12(7):809–19. DOI: 10.1586/14760584.2013.811208


Review

For citations:


Baryshnikova M.A., Ponomarev A.V., Rudakova A.A., Sokolova Z.A., Golubtsova N.V., Tsarapaev P.V., Levagina G.M., Danilenko E.D., Kosorukov V.S. Comparison of Ridostin Pro and Poly(I:C) as adjuvant for a cancer neoantigen peptide vaccine. Russian Journal of Biotherapy. 2022;21(3):82-89. (In Russ.) https://doi.org/10.17650/1726-9784-2022-21-3-82-89

Views: 262


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1726-9784 (Print)
ISSN 1726-9792 (Online)