Technological aspects of creating neopeptide vaccines
https://doi.org/10.17650/1726-9784-2022-21-4-10-21
Abstract
Personalized neoantigen vaccines are a group of individually designed cancer vaccines that enhance patients’ own antigen-specific immune responses. These include vaccines based on dendritic cells, DNA, mRNA and synthetic peptides. An analysis of 98 clinical trials of neoantigenic vaccines from the ClinicalTrials.gov database found that peptide vaccines are one of the most popular cancer vaccines, accounting for about 50 % of clinical trials. They usually consist of a mixture of long or short peptides, dissolved depending on their properties in an appropriate solvent, and an adjuvant that stabilizes and increases their effectiveness. The most used immunoadjuvants in the formulation of neopeptide vaccines are Toll-like receptor agonists (poly-ICLC) and granulocyte-macrophage colony-stimulating factor. The development of neoantigenic vaccines presents a number of distinctive challenges compared to other types of vaccines. The process should cover and validate the various steps in the development, production and administration processes in order to maximize the efficacy and safety of vaccines. In the technology for the production of peptide vaccines, 3 main stages can be distinguished: 1) screening and identification of neoepitopes using the approaches of computer prediction, co-immunoprecipitation, mass spectrometry and cytotoxic experiments; 2) synthesis of peptides by methods of standard solid-phase synthetic peptide chemistry; 3) actually obtaining a vaccine preparation suitable for storage, transportation and administration to the patient. Taking into account the specificity of the drug, the manufacturing process must be carried out strictly according to the Good Manufacturing Practice standard with mandatory quality control of intermediate and finished products
About the Authors
M. V. DmitrievaRussian Federation
24 Kashirskoe shosse, Moscow 115522
M. A. Baryshnikovа
Russian Federation
24 Kashirskoe shosse, Moscow 115522
O. L. Orlova
Russian Federation
24 Kashirskoe shosse, Moscow 115522
V. S. Kosorukov
Russian Federation
24 Kashirskoe shosse, Moscow 115522
References
1. Blass E., Ott P.A. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat Rev Clin Oncol 2021;18(4):215–29. DOI: 10.1038/s41571-020-00460-2
2. Sobhani N., Scaggiante B., Morris R. et al. Therapeutic cancer vaccines: from biological mechanisms and engineering to ongoing clinical trials. Cancer Treat Rev 2022;109:102429. DOI: 10.1016/j.ctrv.2022.1/02429
3. Papież M.A., Krzyściak W. Biological therapies in the treatment of cancer-update and new directions. Int J Mol Sci 2021;22(21):11694. DOI: 10.3390/ijms222111694
4. Charneau J., Suzuki T., Shimomura M. et al. Peptide-based vaccines for hepatocellular carcinoma: a review of recent advances. J Hepatocell Carcinoma 2021;8:1035–54. DOI: 10.2147/JHC.S291558
5. Ferrall L., Lin K.Y., Roden R.B.S. et al. Cervical cancer immunotherapy: facts and hopes. Clin Cancer Res 2021;27(18):4953–73. DOI: 10.1158/1078-0432.CCR-20-2833
6. Tang M., Cai J.H., Diao H.Y. et al. The progress of peptide vaccine clinical trials in gynecologic oncology. Hum Vaccin Immunother 2022;18(5):2062982. DOI: 10.1080/21645515.2022.2062982
7. Zhao X., Pan X., Wang Y., Zhang Y. Targeting neoantigens for cancer immunotherapy. Biomark Res 2021;9(1):61. DOI: 10.1186/s40364-021-00315-7
8. Lee H.H., Hong S.H., Rhee J.H., Lee S.E. Optimal long peptide for flagellin-adjuvanted HPV E7 cancer vaccine to enhance tumor suppression in combination with anti-PD-1. Transl Cancer Res 2022;11(6):1595–602. DOI: 10.21037/tcr-21-2798
9. Chen Z., Zhang S., Han N. et al. A Neoantigen-based peptide vaccine for patients with advanced pancreatic cancer refractory to standard treatment. Front Immunol 2021;12:691605. DOI: 10.3389/fimmu.2021.691605
10. Zhou W.J., Qu Z., Song C.Y. et al. NeoPeptide: an immunoinformatic database of T-cell-defined neoantigens. Database (Oxford) 2019;2019:baz128. DOI: 10.1093/database/baz128
11. Chen H., Li Z., Qiu L. et al. Personalized neoantigen vaccine combined with PD-1 blockade increases CD8+ tissue-resident memory T-cell infiltration in preclinical hepatocellular carcinoma models. J Immunother Cancer 2022;10(9):e004389. DOI: 10.1136/jitc-2021-004389
12. De Waele J., Verhezen T., van der Heijden S. et al. A systematic review on poly(I:C) and poly-ICLC in glioblastoma: adjuvants coordinating the unlocking of immunotherapy. J Exp Clin Cancer Res 2021;40(1):213. DOI: 10.1186/s13046-021-02017-2
13. Dillman R.O. An update on GM-CSF and its potential role in melanoma management. Melanoma Manag 2020;7(3):MMT49. DOI: 10.2217/mmt-2020-0011
14. Kumar A., Taghi Khani A., Sanchez Ortiz A., Swaminathan S. GM-CSF: a double-edged sword in cancer immunotherapy. Front Immunol 2022;13:901277. DOI: 10.3389/fimmu.2022.901277
15. Mørk S.K., Kadivar M., Bol K.F. et al. Personalized therapy with peptide-based neoantigen vaccine (EVX-01) including a novel adjuvant, CAF®09b, in patients with metastatic melanoma. Oncoimmunology 2022;11(1):2023255. DOI: 10.1080/2162402X. 2021.2023255
16. Jing Z., Wang S., Xu K. et al. A potent micron neoantigen tumor vaccine GP-Neoantigen induces robust antitumor activity in multiple tumor models. Adv Sci (Weinh) 2022;9(24):e2201496. DOI: 10.1002/advs.202201496
17. Oosting L.T., Franke K., Martin M.V. et al. Development of a personalized tumor neoantigen based vaccine formulation (FRAME-001) for use in a phase II trial for the treatment of advanced non-small cell lung cancer. Pharmaceutics 2022;14(7):1515. DOI: 10.3390/pharmaceutics14071515
18. Sha H., Liu Q., Xie L. et al. Case report: pathological complete response in a lung metastasis of phyllodes tumor patient following treatment containing peptide neoantigen nano-vaccine. Front Oncol 2022;12:800484. DOI: 10.3389/fonc.2022.800484
19. Li F., Deng L., Jackson K.R. et al. Neoantigen vaccination induces clinical and immunologic responses in non-small cell lung cancer patients harboring EGFR mutations. J Immunother Cancer 2021;9(7):e002531. DOI: 10.1136/jitc-2021-002531 Erratum in: J Immunother Cancer 2021;9(9):1.
20. Buck H.W. Imiquimod (Aldara cream). Infect Dis Obstet Gynecol 1998;6(2):49–51. DOI: 10.1002/(SICI)1098-0997(1998)6:2<49::AID-IDOG3>3.0.CO;2-2
21. Bubna A.K. Imiquimod – its role in the treatment of cutaneous malignancies. Indian J Pharmacol 2015;47(4):354–9. DOI: 10.4103/0253-7613.161249
22. Tambunlertchai S., Geary S.M., Salem A.K. Topically applied resiquimod versus imiquimod as a potential adjuvant in melanoma treatment. Pharmaceutics 2022;14(10):2076. DOI: 10.3390/pharmaceutics14102076
23. Reynolds C.R., Tran S., Jain M., Narendran A. Neoantigen cancer vaccines: generation, optimization, and therapeutic targeting strategies. Vaccines (Basel) 2022;10(2):196. DOI: 10.3390/vaccines10020196
24. Hellmann M.D., Snyder A. Making it personal: neoantigen vaccines in metastatic melanoma. Immunity 2017;47(2):221–3. DOI: 10.1016/j.immuni.2017.08.001
25. Li L., Goedegebuure S.P., Gillanders W.E. Preclinical and clinical development of neoantigen vaccines. Ann Oncol 2017;28(suppl_12):xii11-xii7. DOI: 10.1093/annonc/mdx681
26. Lang F., Schrörs B., Löwer M. et al. Identification of neoantigens for individualized therapeutic cancer vaccines. Nat Rev Drug Discov 2022;21(4):261–82. DOI: 10.1038/s41573-021-00387-y
27. Khodadoust M.S., Olsson N., Wagar L.E. et al. Antigen presentation profiling reveals recognition of lymphoma immunoglobulin neoantigens. Nature 2017;543(7647):723–7. DOI: 10.1038/nature21433
28. Chen P., Fang Q.X., Chen D.B., Chen H.S. Neoantigen vaccine: an emerging immunotherapy for hepatocellular carcinoma. World J Gastrointest Oncol 2021;13(7):673–83. DOI: 10.4251/wjgo.v13.i7.673
29. Rubinsteyn A., Kodysh J., Hodes I. et al. Computational pipeline for the PGV-001 neoantigen vaccine trial. Front Immunol 2018;8:1807. DOI: 10.3389/fimmu.2017.01807
30. Long G.V., Ferrucci P.F., Khattak A. et al. KEYNOTE – D36: personalized immunotherapy with a neoepitope vaccine, EVX-01 and pembrolizumab in advanced melanoma. Future Oncol 2022. Ahead of print. DOI: 10.2217/fon-2022-0694
31. Tang Y., Wang Y., Wang J. et al. TruNeo: an integrated pipeline improves personalized true tumor neoantigen identification. BMC Bioinformatics 2020;21(1):532. DOI: 10.1186/s12859-020-03869-9
32. Hundal J., Kiwala S., McMichael J. et al. pVACtools: a computational toolkit to identify and visualize cancer neoantigens. Cancer Immunol Res 2020;8(3):409–20. DOI: 10.1158/2326-6066.CIR-19-0401
33. Shao X.M., Bhattacharya R., Huang J. et al. High-throughput prediction of MHC class I and II neoantigens with MHCnuggets. Cancer Immunol Res 2020;8(3):396–408. DOI: 10.1158/2326-6066.CIR-19-0464
34. Cai Z., Su X., Qiu L. et al. Personalized neoantigen vaccine prevents postoperative recurrence in hepatocellular carcinoma patients with vascular invasion. Mol Cancer 2021;20(1):164. DOI: 10.1186/s12943-021-01467-8
35. Harari A., Sarivalasis A., de Jonge K. et al. A Personalized neoantigen vaccine in combination with platinum-based chemotherapy induces a T-Cell response coinciding with a complete response in endometrial carcinoma. Cancers (Basel) 2021;13(22):5801. DOI: 10.3390/cancers13225801
36. Keskin D.B., Anandappa A.J., Sun J. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature 2019;565(7738):234–9. DOI: 10.1038/s41586-018-0792-9
37. Ott P.A., Hu Z., Keskin D.B. et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 2017;547(7662):217–21. DOI: 10.1038/nature22991
38. Ott P.A., Hu-Lieskovan S., Chmielowski B. et al. A phase Ib trial of personalized neoantigen therapy plus anti-PD-1 in patients with advanced melanoma, non-small cell lung cancer, or bladder cancer. Cell 2020;183(2):347–62.e24. DOI: 10.1016/j.cell.2020.08.053
39. Shou J., Mo F., Zhang S. et al. Combination treatment of radiofrequency ablation and peptide neoantigen vaccination: promising modality for future cancer immunotherapy. Front Immunol 2022;13:1000681. DOI: 10.3389/fimmu.2022.1000681
Review
For citations:
Dmitrieva M.V., Baryshnikovа M.A., Orlova O.L., Kosorukov V.S. Technological aspects of creating neopeptide vaccines. Russian Journal of Biotherapy. 2022;21(4):10-21. (In Russ.) https://doi.org/10.17650/1726-9784-2022-21-4-10-21