Tumor microenvironment biomarkers in breast cancer
https://doi.org/10.17650/1726-9784-2023-22-1-19-27
Abstract
Breast cancer is the most common malignant tumor in women. The tumor structure in breast cancer is characterized not only by morphological heterogeneity of tumor cells, but also by a high degree of heterogeneity of tumor microenvironment, which contains immune cells, cell matrix elements, and other components that may have procarcinogenic or anticarcinogenic effects. Therefore, personalized approaches to selecting the most effective breast cancer treatment protocols cannot be used without comprehensive analysis of the target cancer markers and cellular microenvironment biomarkers.
This review is aimed at systematizing the data on tumor microenvironment biomarkers and evaluating the prognostic value of the analysis of tumor microenvironment biomarkers in breast cancer.
Biomarkers of the tumor microenvironment are important prognostic factors. Molecular genetic analysis of the profile of these biomarkers, as well as immunohistochemical studies of the mutual arrangement of tumor cells and tumor microenvironment can be used for high-accuracy cancer diagnosis and for the selection of effective personalized therapy in breast cancer. This comprehensive research is necessary because of the plasticity of tumor microenvironment cells, which can either support tumor growth, block immune response, and provide resistance to drugs, or exhibit antitumor activity.
The key elements of the tumor microenvironment in breast cancer have been analyzed, and examples of interaction between tumor cells and the microenvironment, as well as data on the prognostic and diagnostic values of tumor microenvironment biomarkers, have been summarized. The tumor microenvironment has been shown to affect the formation of drug resistance and the efficiencies of various breast cancer therapies.
About the Authors
P. M. SokolovRussian Federation
31 Kashirskoe Shosse, 115409 Moscow, Russia
A. V. Karaulov
Russian Federation
Bld. 2, 8 Trubetskaya St., 119146 Moscow, Russia
A. V. Sukhanova
France
51 rue Cognacq Jay, 51100 Reims, France
I. R. Nabiev
Russian Federation
Igor Rufailovich Nabiev
Bld. 2, 8 Trubetskaya St., 119146 Moscow, Russia
51 rue Cognacq Jay, 51100 Reims, France
References
1. Sung H., Ferlay J., Siegel R.L. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71(3):209–49. DOI: 10.3322/caac.21660
2. Clinical recommendations. Breast cancer. Ministry of Health of Russia, 2021. Available at: https://oncology-association.ru/wp-content/uploads/2021/02/rak-molochnoj-zhelezy-2021.pdf.
3. Hanker A.B., Sudhan D.R., Arteaga C.L. Overcoming endocrine resistance in breast cancer. Cancer Cell 2020;37(4):496–513. DOI: 10.1016/j.ccell.2020.03.009
4. Wang R., Zhu Y., Liu X. et al. The clinicopathological features and survival outcomes of patients with different metastatic sites in stage IV breast cancer. BMC Cancer 2019;19(1):1091. DOI: 10.1186/s12885-019-6311-z
5. Caswell-Jin J.L., Lorenz C., Curtis C. Molecular heterogeneity and evolution in breast cancer. Ann Rev Cancer Biol 2021;5(1):79–94. DOI: 10.1146/annurev-cancerbio-060220-014137
6. Lundgren C., Bendahl P.-O., Ekholm M. et al. Tumourinfiltrating lymphocytes as a prognostic and tamoxifen predictive marker in premenopausal breast cancer: data from a randomized trial with long-term follow-up. Breast Cancer Res 2020;22(1):140. DOI: 10.1186/s13058-020-01364-w
7. Hu Q., Hong Y., Qi P. et al. Atlas of breast cancer infiltrated B-lymphocytes revealed by paired single-cell RNA-sequencing and antigen receptor profiling. Nat Commun 2021;12(1):2186. DOI: 10.1038/s41467-021-22300-2
8. Zhao X., Qu J., Sun Y. et al. Prognostic significance of tumorassociated macrophages in breast cancer: a meta-analysis of the literature. Oncotarget 2017;8(18):30576–86. DOI: 10.18632/oncotarget.15736
9. Soto-Perez-de-Celis E., Chavarri-Guerra Y., Leon-Rodriguez E., Gamboa-Dominguez A. Tumor-associated neutrophils in breast cancer subtypes. Asian Pac J Cancer Prev 2017;18(10):2689–93. DOI: 10.22034/apjcp.2017.18.10.2689
10. Szpor J., Streb J., Glajcar A. et al. Dendritic cells are associated with prognosis and survival in breast cancer. Diagnostics (Basel) 2021;11(4):702. DOI: 10.3390/diagnostics11040702
11. Galván Morales M.A., Barrera Rodríguez R., Santiago Cruz J.R., Teran L.M. Overview of new treatments with immunotherapy for breast cancer and a proposal of a combination therapy. Molecules 2020;25(23):5686. DOI: 10.3390/molecules25235686
12. Palazón-Carrión N., Jiménez-Cortegana C., Sánchez-León M.L. et al. Circulating immune biomarkers in peripheral blood correlate with clinical outcomes in advanced breast cancer. Sci Rep 2021;11(1):14426. DOI: 10.1038/s41598-021-93838-w
13. Petitprez F., Meylan M., de Reyniès A. et al. The tumor microenvironment in the response to immune checkpoint blockade therapies. Front Immunol 2020;11:784. DOI:10.3389/fimmu.2020.00784
14. Hachim M.Y., Hachim I.Y., Talaat I.M. et al. M1 polarization markers are upregulated in basal-like breast cancer molecular subtype and associated with favorable patient outcome. Front Immunol 2020;11:560074. DOI: 10.3389/fimmu.2020.560074
15. Bobrie A., Massol O., Ramos J. et al. Association of CD206 protein expression with immune infiltration and prognosis in patients with triple-negative breast cancer. Cancers (Basel) 2022;14(19):4829. DOI: 10.3390/cancers14194829
16. Klingen T.A., Chen Y., Aas H. et al. Tumor-associated macrophages are strongly related to vascular invasion, nonluminal subtypes, and interval breast cancer. Hum Pathol 2017;69:72–80. DOI: 10.1016/j.humpath.2017.09.001
17. Karthaus N., Torensma R., Tel J. Deciphering the message broadcast by tumor-infiltrating dendritic cells. Am J Pathol 2012;181(3):733–42. DOI: 10.1016/j.ajpath.2012.05.012
18. Buisseret L., Garaud S., de Wind A. et al. Tumor-infiltrating lymphocyte composition, organization and PD-1/ PD-L1 expression are linked in breast cancer. Oncoimmunology 2017;6(1):e1257452. DOI: 10.1080/2162402x.2016.1257452
19. Duan Q., Zhang H., Zheng J., Zhang L. Turning cold into hot: firing up the tumor microenvironment. Trends Cancer 2020;6(7):605–18. DOI: 10.1016/j.trecan.2020.02.022
20. Caparica R., Bruzzone M., Agostinetto E. et al. Tumourinfiltrating lymphocytes in non-invasive breast cancer: A systematic review and meta-analysis. Breast (Edinburgh) 2021;59:183–92. DOI: 10.1016/j.breast.2021.07.007
21. Wang Z.Q., Milne K., Derocher H. et al. CD103 and intratumoral immune response in breast cancer. Clin Cancer Res 2016;22(24):6290–7. DOI: 10.1158/1078-0432.ccr-16-0732
22. Savas P., Virassamy B., Ye C. et al. Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. Nat Med 2018;24(7):986–93. DOI: 10.1038/s41591-018-0078-7
23. Frazao A., Messaoudene M., Nunez N. et al. CD16+NKG2Ahigh natural killer cells infiltrate breast cancer-draining lymph nodes. Cancer Immunol Res 2019;7(2):208–18. DOI: 10.1158/2326-6066.cir-18-0085
24. Wang R., Jaw J.J., Stutzman N.C. et al. Natural killer cellproduced IFN-γ and TNF-α induce target cell cytolysis through up-regulation of ICAM-1. J Leukoc Biol 2012;91(2):299–309. DOI: 10.1189/jlb.0611308
25. Nersesian S., Schwartz S.L., Grantham S.R. et al. NK cell infiltration is associated with improved overall survival in solid cancers: a systematic review and meta-analysis. Transl Oncol 2021;14(1):100930. DOI: 10.1016/j.tranon.2020.100930
26. Poropatich K., Dominguez D., Chan W.C. et al. OX40+ plasmacytoid dendritic cells in the tumor microenvironment promote antitumor immunity. J Clin Invest 2020;130(7):3528–42. DOI: 10.1172/jci131992
27. Sharonov G.V., Serebrovskaya E.O., Yuzhakova D.V. et al. B cells, plasma cells and antibody repertoires in the tumour microenvironment. Nat Rev Immunol 2020;20(5):294–307. DOI: 10.1038/s41577-019-0257-x
28. Sakaguchi A., Horimoto Y., Onagi H. et al. Plasma cell infiltration and treatment effect in breast cancer patients treated with neoadjuvant chemotherapy. Breast Cancer Res 2021;23(1):99. DOI: 10.1186/s13058-021-01477-w
29. Qin G., Wang X., Ye S. et al. NPM1 upregulates the transcription of PD-L1 and suppresses T cell activity in triple-negative breast cancer. Nat Commun 2020;11(1):1669. DOI: 10.1038/s41467-020-15364-z
30. Johansson A.L.V., Trewin C.B., Hjerkind K.V. et al. Breast cancer-specific survival by clinical subtype after 7 years follow-up of young and elderly women in a nationwide cohort. Int J Cancer 2019;144(6):1251–61. DOI: 10.1002/ijc.31950
31. Yersal O., Barutca S. Biological subtypes of breast cancer: prognostic and therapeutic implications. World J Clin Oncol 2014;5(3):412–24. DOI: 10.5306/wjco.v5.i3.412
32. Hurvitz S.A., McAndrew N.P., Bardia A. et al. A careful reassessment of anthracycline use in curable breast cancer. NPJ Breast Cancer 2021;7(1):134. DOI: 10.1038/s41523-021-00342-5
33. Saraiva D.P., Correia B.F., Salvador R. et al. Circulating low density neutrophils of breast cancer patients are associated with their worse prognosis due to the impairment of T cell responses. Oncotarget 2021;12(24):2388–403. DOI: 10.18632/oncotarget.28135
34. Khalaf K., Hana D., Chou J.T.-T. et al. Aspects of the tumor microenvironment involved in immune resistance and drug resistance. Front Immunol 2021;12:656364. DOI: 10.3389/fimmu.2021.656364
35. Castells M., Thibault B., Delord J.P., Couderc B. Implication of tumor microenvironment in chemoresistance: tumorassociated stromal cells protect tumor cells from cell death. Int J Mol Sci 2012;13(8):9545–71. DOI: 10.3390/ijms13089545
36. Dauer P., Nomura A., Saluja A., Banerjee S. Microenvironment in determining chemo-resistance in pancreatic cancer: neighborhood matters. Pancreatology 2017;17(1):7–12. DOI: 10.1016/j.pan.2016.12.010
37. Tang N., Wang L., Esko J. et al. Loss of HIF-1alpha in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell 2004;6(5):485–95. DOI: 10.1016/j.ccr.2004.09.026
38. Taflin C., Favier B., Baudhuin J. et al. Human endothelial cells generate Th17 and regulatory T cells under inflammatory conditions. Proc Natl Acad Sci U S A 2011;108(7):2891–96. DOI: 10.1073/pnas.1011811108
39. Komarova S., Kawakami Y., Stoff-Khalili M.A. et al. Mesenchymal progenitor cells as cellular vehicles for delivery of oncolytic adenoviruses. Mole Cancer Ther 2006;5:755–66. DOI: 10.1158/1535-7163.mct-05-033427
40. Chen L., Tredget E.E., Wu P.Y., Wu Y. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PloS One 2008;3(4):e1886. DOI: 10.1371/journal.pone.0001886
41. Aldinucci D., Colombatti A. The inflammatory chemokine CCL5 and cancer progression. Mediators Inflamm 2014;2014:292376. DOI: 10.1155/2014/292376
42. Kuperwasser C., Chavarria T., Wu M. et al. Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci U S A 2004;101(14):4966–71. DOI: 10.1073/pnas.0401064101
43. Takahashi H., Sakakura K., Kudo T. et al. Cancer-associated fibroblasts promote an immunosuppressive microenvironment through the induction and accumulation of protumoral macrophages. Oncotarget 2017;8(5):8633–47. DOI: 10.18632/oncotarget.14374
44. Zhou B.-B.S., Zhang H., Damelin M. et al. Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov 2009;8(10):806–23. DOI: 10.1038/nrd2137
45. Boyd A.S.; Rodrigues N.P. Stem cells cycle toward immune surveillance. Immunity 2018;48(2):187–90. DOI: 10.1016/j.immuni.2018.02.006
46. Jiang E., Yan T., Xu Z., Shang Z. Tumor microenvironment and cell fusion. Biomed Res Int 2019;2019:5013592. DOI: 10.1155/2019/5013592
47. Solinas G., Germano G., Mantovani A., Allavena P. Tumorassociated macrophages (TAM) as major players of the cancerrelated inflammation. J Leukoc Biol 2009;86(5):1065–73. DOI: 10.1189/jlb.0609385
48. Haqqani A.S., Sandhu J.K., Birnboim H.C. Expression of interleukin-8 promotes neutrophil infiltration and genetic instability in mutatect tumors. Neoplasia 2000;2(6):561–8. DOI: 10.1038/sj.neo.7900110
49. Bharadwaj U., Li M., Zhang R. et al. Elevated interleukin-6 and G-CSF in human pancreatic cancer cell conditioned medium suppress dendritic cell differentiation and activation. Cancer Res 2007;67(11):5479–88. DOI: 10.1158/0008-5472.can-06-3963
50. Wilson E.B., El-Jawhari J.J., Neilson A.L. et al. Human tumour immune evasion via TGF-β blocks NK cell activation but not survival allowing therapeutic restoration of anti-tumour activity. PloS One 2011;6(9):e22842. DOI: 10.1371/journal.pone.0022842
51. Olkhanud P.B., Damdinsuren B., Bodogai M. et al. Tumorevoked regulatory B cells promote breast cancer metastasis by converting resting CD4+ T cells to T-regulatory cells. Cancer Res 2011;71(10):3505–3515. DOI: 10.1158/0008-5472.can-10-4316
52. Fujimura T., Kambayashi Y., Aiba S. Crosstalk between regulatory T cells (Tregs) and myeloid derived suppressor cells (MDSCs) during melanoma growth. Oncoimmunology 2012;1(8):1433–4. DOI: 10.4161/onci.21176
53. Lu H., Clauser K.R., Tam W.L. et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol 2014;16(11):1105–17. DOI: 10.1038/ncb3041
54. Li I., Nabet B.Y. Exosomes in the tumor microenvironment as mediators of cancer therapy resistance. Mol Cancer 2019;18(1):32. DOI: 10.1186/s12943-019-0975-5
Review
For citations:
Sokolov P.M., Karaulov A.V., Sukhanova A.V., Nabiev I.R. Tumor microenvironment biomarkers in breast cancer. Russian Journal of Biotherapy. 2023;22(1):19-27. (In Russ.) https://doi.org/10.17650/1726-9784-2023-22-1-19-27