Features of regulation of hepcidin and ferroportin in cancer patients (literary review)
https://doi.org/10.17650/1726-9784-2023-22-3-10-18
Abstract
Background. The pathways of iron acquisition, outflow, storage and regulation are disrupted in cancer, which suggests that the reprogramming of iron metabolism is one of the central aspects of the survival of tumor cells.
Aim. Is to review and generalize modern literature data on the regulation of hepcidin, ferroportin and prospects for the correction of iron metabolism in cancer patients.
Materials and Methods. The paper presents the results of international and domestic studies of the peculiarities of iron metabolism and the prospects for its correction in cancer patients. The search for relevant sources was carried out in the web of Science, PubMed, Medline, eLibrary.ru systems for 1988–2023. Of the analyzed studies 61, the most relevant, were used to write a systematic review.
Results. Over the past decade, a new understanding has emerged of the role of proteins, in particular hepcidin and ferroportin, which regulate cellular iron in cancer growth, angiogenesis and metastasis. New treatment methods with hepcidin-modifying strategies and stabilizers of hypoxia-induced factors are emerging, but their therapeutic efficacy for correcting iron metabolism in cancer patients needs to be evaluated and clinical trials.
Conclusion. Analysis of the literature data has shown the high relevance of studies of the regulation of hepcidin and ferroportin in cancer patients and the need for further study of this problem.
About the Authors
V. N. BlindarRussian Federation
24 Kashirskoe Shosse, Moscow115522
G. N. Zubrikhina
Russian Federation
24 Kashirskoe Shosse, Moscow115522
T. V. Davydova
Russian Federation
24 Kashirskoe Shosse, Moscow115522
M. M. Dobrovolskaya
Russian Federation
24 Kashirskoe Shosse, Moscow115522
References
1. Mutlu T., Ozoran E., Trabulus D.C. et al. Expression of genes related to iron homeostasis in breast cancer. Mol Biol Rep 2023;50:5157–63. DOI: 10.1007/s11033-023-08433-1
2. Pourali L., Taghizadeh A., Akhoundi M.R. et al. Frequency of Chemotherapy Induced Anemia in Breast Cancer Patients. Int J Cancer Manag 2017;10(1):e4672. DOI: 10.17795/ijcp-4672
3. Aapro M., Beguin Y., Bokemeyer C. et al. Management of anaemia and iron deficiency in patients with cancer: ESMO Clinical Practice Guidelines. Ann Oncol 2018; 29(Suppl 4):iv96– iv110. DOI: 10.1093/annonc/mdx758
4. Jung M., Mertens C., Tomat E., Brüne B. Iron as a central player and promising target in cancer progression. Int J Mol Sci 2019;20(2):273. DOI: 10.3390/ijms20020273
5. Madeddu C., Neri M., Sanna E. et al. Experimental drugs for chemotherapyand cancer-related anemia. J Pharm and Exper 2021;13:593–611. DOI: 0.2147/JEP.S262349
6. Blindar V.N., Khagazheeva M.N., Davydova T.V. et al. Diagnosis and treatment of anemic syndrome in patients with breast cancer on the background neoadjuvant chemotherapy. Rossiyskiy bioterapevticheskiy zhurnal = Russian Journal of Biotherapy 2021;20(2):42–52. (In Russ.). DOI: 10.17650/1726-9784-2021-20-2-42-52
7. Blindar V.N., Dobrovolskaya M.M., Khagazheeva M.N. et al. The role of interleukin-6 and hepcidin-25 in the pathogenesis of anemic syndrome associated with malignant neoplasms in cancer patients with breast cancer before neoadjuvant chemotherapy. Klinicheskaya Laboratornaya Diagnostika = Russian Clinical Laboratory Diagnostics 2021; 66(3):147–53. (In Russ.). DOI: 10.51620/0869-2084-2021-66-3-147-153
8. Nemeth E., Ganz T. Hepcidin-ferroportin interaction controls systemic iron homeostasis. Int J Mol Sci 2021;22(12):6493. DOI: 10.3390/ijms22126493
9. Charostad J., Azaran A., Nakhaei M. et al. Upregulation of interleukin-6 in HPV-positive breast cancer patients. Iran J Immunol 2021;18(4):315–30. DOI: 10.22034/IJI.2021.89107.1930
10. Julián-Serrano S., Yuan F., Wheeler W. et al. Hepcidin-regulating iron metabolism genes and pancreatic ductal adenocarcinoma: a pathway analysis of genome-wide association studies. Am J Clinic Nutr 2021;114(4):1408–17. DOI: org/10.1093/ajcn/nqab217
11. Ciniselli C.M., De Bortoli М., Taverna E. et al. Plasma hepcidin in early-stage breast cancer patients: no relationship with interleukin-6, erythropoietin and erythroferrone. Exp Rev Prot 2015;12(6):695–701. DOI: 10.1586/14789450.2015.1099436
12. Tesfay L., Clausen K.A., Kim J.W. et al. Hepcidin regulation in prostate and its disruption in prostate cancer. Cancer Res 2015;75(11):2254–63. DOI: 10.1158/0008-5472.CAN-14-2465
13. Lu Ye, Cheng X., Li R. et al. The expression and clinical significance of ferroportin and hepcidin in breast cancer patients. The Journal of the Kuwait Medical Association 2016;48(4): 323–7.
14. Blindar V.N., Zubrikhina G.N., Davydova T.V. et al. The development of the strategic approaches to modern diagnosis of anemic syndrome in patients with breast cancer. Klinicheskaya Laboratornaya Diagnostica = Russian Clinical Laboratory Diagnostics 2019;64(4):210–5. (In Russ.). DOI: 10.18821/0869-2084-2019-64-4-210-215
15. Shao X.N., Cao F., Tao M. the clinical value of hepcidin in breast cancer and its bone metastasis. Ann Clin Lab Sci 2017;47(2):120–8.
16. Andrews N.C. Anemia of inflammation: the cytokinehepcidin link. J Clin Invest 2004;113(9):1251–3.
17. De Bortoli M., Taverna E., Varinelli L. et al. Plasma hepcidin in early-stage breast cancer patients: no relationship with interleukin-6, erythropoietin and erythroferrone. Expert Rev Proteom 2015;12(6):695–701. DOI: 10.1586/14789450.2015.1099436
18. Blindar V.N., Zubrikhina G.N., Davydova T.V. et al. Features of iron metabolism in breast cancer patients before adjuvant chemotherapy. Rossiyskiy bioterapevticheskiy zhurnal = Russian Journal of Biotherapy 2022;21 (1):33–41. (In Russ.). DOI: 10.17650/1726-9784-2022-21-1-33-41
19. Marques O., Porto G., Rêma A. et al. Local iron homeostasis in the breast ductal carcinoma microenvironment. BMC Cancer 2016;16:187. DOI: 10.1186/s12885-016-2228-y
20. Dobrovolskaya M.M. Zubrikhina G.N., Blindar V.N., Sytov A.V. Oxidative stress and endogenous intoxication in cancer patients. Klinicheskaya Laboratornaya Diagnostica = Russian Clinical Laboratory Diagnostics 2021;66(7):401–6. (In Russ.). DOI: 10.51620/0869-2084-2021-66-7-401-406
21. Demir H., Beipinar J., Urvay S. et al. Prognostic role of preoperative serum ferritin level in stage 2 colon cancer. Eur Rev Med and Pharmac Sci 2021;25(21):6473–9. DOI: 10.26355/eurrev_202111_27091
22. Zhang S.P., Chen Y., Guo W.L. et al. Disordered hepcidinferroportin signaling promotes breast cancer growth. Cell Sign 2014;26(11):2539–50. DOI: 10.1016/j.cellsig.2014.07.029
23. Wang J., Liu W., Lee J.K. Hepcidin downregulation correlates with disease aggressiveness and immune infiltration in liver cancer. Front Oncol 2021;11:714756.
24. Manz D.H., Blanchette N.L., Paul B.T. et al. Iron and cancer: recent insights. Ann NY Acad Sci 2016;1368(1):149–61. DOI: /10.1111/nyas.13008
25. Sornjai W., Nguyen V., Long F. et al. Iron and hepcidin mediate human colorectal cancer cell growth. Chem Biol Interact 2020;319:109021. DOI: 10.1016/j.cbi.2020.109021
26. Torti S.V., Torti F.M. Iron and Cancer: Vision 2020. Cancer Res 2020;80(24):5435–48. DOI: 10.1158/0008-5472.CAN-20-2017
27. Al Tameemi W., Dale T.P., Al-Jumaily R.M.Kh. et al. Hypoxiamodified cancer cell metabolism. Front Cell and Devel Biol 2019;7:4. DOI: 10.3389/fcell.2019.00004
28. Nefedova N.A., Kharlova O.A., Danilova N.V. et al. Markers of angiogenesis in tumor growth. Arxiv patologii = Archive of Pathology 2016;78(2):55–63. (In Russ.). DOI: org/10.17116/patol201678255-62
29. Vasiliev A.G. Neoangiogenesis and tumor growth. Rossijskie biomedicinskie issledovaniya = Russian Biomedical Research 2017;2(4):4–10. (In Russ.).
30. Liu Z., Wu Z., Fan Y., Fang Y. An overview of biological research on hypoxia-inducible factors (HIFs). Endokrynol Pol 2020;71(5):432–40. DOI: 10.5603/EP.a2020.0064
31. Huang G., Yan J., Xu C. et al. The crosstalk between HIFs and mitochondrial dysfunctions in cancer development. Cell Death Dis 2021;12(2):215. DOI: 10.1038/s41419-021-03505-1
32. Astashkin E.I. Effect of hypoxia on the life of tumor cells and its correlation by chemical agents and drags. Farmateka 2016;9: 20–7. (In Russ.).
33. Forciniti S., Greco L., Grizzi F. et al. Iron metabolism in cancer progression. Int J Mol Sci 2020;21(6):2257. DOI: 10.3390 /ijms21062257
34. Pasricha S.R., McHugh C., Draksmith H. Hepcidin regulation by erythropoiesis: the current history. Annu Rev Nutr 2016;36: 417–34. DOI: 10.1146/annurev-nutr-071715-050731
35. Vela D., Vela-Gaxha Z. Differential regulation of hepcidin in cancer and non-cancer tissues and its clinical implications. Exp Mol Med 2018;50(2):e436. DOI: 10.1038/emm.2017.273
36. Durigovaa A., Lamy P.J., Thezenas S. et al. Anemia and iron biomarkers in patients with early breast cancer. Diagnostic value of hepcidin and soluble transferrin receptor quantification. Clin Chem Lab Med 2013;519):1833–41. DOI: 10.1515/cclm-2013-0031
37. Serrano S.J., Yuan F.C., Wheeler W. et al. Hepcidin-regulating iron metabolism genes and pancreatic ductal adenocarcinoma: A pathway analysis of genome-wide association studies. Am J Clin Nutr 2021;114(4):1408–17. DOI: org/10.1093/ajcn/nqab2171
38. Xiao X., Alfaro-Magallanes V.M., Babitt J.L. Bone morphogenic proteins in iron homeostasis. Bone 2020;138:115495. DOI: 10.1016/j.bone.2020.115495
39. Park C.H., Valore E.V., Waring A.J. et al. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem 2001;276(11):7806–10. DOI: 10.1074/jbc.M008922200
40. Sasu B.J., Cooke K.S., Arvedson T.L. et al. Antihepcidin antibody treatment modulates iron metabolism and is effective in a mouse model of inflammation-induced anemia. Blood 2010;115: 3616–24. DOI: 10.1182/blood-2009-09-245977
41. Steinbicke U., Sachidanandan C., Vonner A.J. et al. Inhibition of bone morphogenetic protein signaling attenuates anemia associated with inflammation. Blood 2011;117:4915–23. DOI: 10.1182/blood-2010-10-313064
42. Guo S., Casu C., Gardenghi S. et al. Reducing TMPRSS6 ameliorates hemochromatosis and β-thalassemia in mice. J Clin Invest 2013;123:1531–41. DOI: 10.1172/JCI66969
43. Ramos E., Ruchala P., Goodnough J.B. et al. Minihepcidins prevent iron overload in a hepcidin-deficient mouse model of severe hemochromatosis. Blood 2012;120:3829–36. DOI: 10.1182/blood-2012-07-440743
44. Wozney J.M., Rosen V., Celeste A.J. et al. Novel regulators of bone formation: molecular clones and activities. Science 1988; 242(4885):1528–34. DOI: 10.1126/science.3201241
45. Rider C.C. Heparin/heparan sulphate binding in the TGF-beta cytokine superfamily. Biochem Soc Trans 2006;34(Pt 3):458–60. DOI: 10.1042/BST0340458
46. Poli M., Girelli D., Campostrini N. et al. Heparin: a potent inhibitor of hepcidin expression in vitro and in vivo. Blood 2011;117(3):997–1004. DOI: 10.1182/blood-2010-06-289082
47. Ritchie J.P., Ramani V.C., Ren Y. et al. SST0001, a chemically modified heparin, inhibits myeloma growth and angiogenesis via disruption of the heparanase/syndecan-1 axis. Clin Cancer Res 2011;17(6):1382–93. DOI: 10.1158/1078-0432.CCR-10-2476
48. Borsig L. Heparin as an indicator of cancer progression. Mol Biol Transl Sci 2010;93:335–49. DOI 10.1016/С1877-1173(10)93014–7
49. Kautz L., Jung G., Nemeth E., Ganz T. Erythroferrone contributes to recovery from anemia of inflammation. Blood 2014;124(16):2569–74. DOI: 10.1182/blood-2014-06-584607
50. Castro-Mollo M., Gera S., Ruiz-Martinez M. et al. The hepcidin regulator erythroferrone is a new member of the erythropoiesis-iron-bone circuitry. Elife 2021;10:e68217. DOI: 10.7554/eLife.68217
51. Witcher D.R., Leung D., Hill K.A., De Rosa D.C. LY2928057, an antibody targeting ferroportin, is a potent inhibitor of hepcidin activity and increases iron mobilization in normal cynomolgus monkeys. Blood 2013;122(21):3433. DOI: 10.1182/blood.V122.21.3433.3433
52. Ross S., Biswas K., Rottman J. et al. Identification of antibody and small molecule antagonists of ferroportinhepcidin interaction. Biol Front Pharm 2017;8:838. DOI: 10.3389/fphar.2017.00838
53. Mross K., Richly H., Fischer R. et al. First-in-human phase I study of PRS-050 (Angiocal), an Anticalin targeting and antagonizing VEGF-A, in patients with advanced solid tumors. PLoS One 2013;8(12):e83232. DOI: 10.1371/journal.pone.0083232
54. Vyoral D., Petrak J. Therapeutic potential of hepcidin – the master regulator of iron metabolism. Pharmacological research 2017;115:242–54. DOI: 10.1016/j.phrs.2016.11.010
55. Ren F., Li J., WangY. et al. The effects of angelica sinensis polysaccharide on tumor growth and iron metabolism by regulating hepcidin intumor-bearing mice. Cell Physiol Biochem 2018;47(3):1084–94. DOI: 10.1159/000490185
56. Shevra C.R., Singh Sh., Singh N. et al. Interleukin-6 and interleukin-4 levels in multiple myeloma and correlation of interleukin-6 with β2 microglobulin and serum creatinine. Clin Cancer Investig J 2015;4:211–5. DOI: 10.4103/2278-0513.148963
57. Song S.N., Iwahashi M., Tomosugi N. et al. Comparative evaluation of the effects of treatment with tocilizumab and TNFalpha inhibitors on serum hepcidin, anemia response and disease activity in rheumatoid arthritis patients. Arthritis Res Ther 2013;15(5):141. DOI: 10.1186/ar4323
58. Jiang L., Kon N., Li T. et al. Ferroptosis as a p53-mediated activity during tumor suppression. Nature 2015;520(7545):57–62. DOI: 10.1038/nature14344
59. Gnanapradeepan K., Basu S., Barnoud T. et al. Tumor suppressor p53 in the control of metabolism and ferroptosis. Front Endocrinol 2018;9:124. DOI: 10.3389/fendo.2018.00124
60. Hassania B., Vandenabil P., Vanden Berge T. Targeting ferroptosis to eliminate cancer. Cancer cell 2019;35(6):830–49. DOI: 10.1016/j.ccell.2019.04.002
61. Rodriguez R., Schreiber S.L., Conrad M. Persistent cancer cells: iron dependence and vulnerability to ferroptosis. Mol Cell 2022;82(4):728–40. DOI: 10.1016/j.molcel.2021.12.001
Review
For citations:
Blindar V.N., Zubrikhina G.N., Davydova T.V., Dobrovolskaya M.M. Features of regulation of hepcidin and ferroportin in cancer patients (literary review). Russian Journal of Biotherapy. 2023;22(3):10-18. (In Russ.) https://doi.org/10.17650/1726-9784-2023-22-3-10-18