Prospects for the creation of a liposomal gemcitabine delivery system
https://doi.org/10.17650/1726-9784-2025-24-1-46-56
Abstract
Background. Chemotherapy remains the mainstay of drug treatment for malignant neoplasms, but its effectiveness is often limited by the development of drug resistance, low selectivity, and toxicity of the drugs used. Gemcitabine therapy, one of the most commonly used chemotherapeutic drugs, has many limitations, such as a short half-life and rapid degradation of the drug in the body. To improve the therapeutic efficacy of gemcitabine, two main strategies have been proposed – chemical modification of the compound and the creation of delivery systems based on various nanocarriers, in particular liposomes.
Aim. To systematize and summarize the literature data on the prospects of developing a liposomal gemcitabine delivery system.
Materials and methods. The search for materials on the topic under study was carried out using the search and information and library databases PubMed, CyberLeninka, e-Library, ResearchGate. The search for publications was carried out for the period from 1997 to 2025 using keywords / phrases: “liposomes”, “liposome encapsulation”, “liposomal gemcitabine”, “liposomal gemcitabine pharmacokinetics”, etc.
Results. To date, numerous models of liposomal forms of gemcitabine have been developed and are at the preclinical development stage, and only one of them, FF-10832, has reached phase I of clinical trials. According to the results of a comparative study of the traditional and nanostructured forms of gemcitabine presented in the analyzed publications, liposomal gemcitabine demonstrates a higher therapeutic effect in in vivo experiments due to increased bioavailability and targeted delivery to tumor cells. However, the main problem in creating an optimal liposomal composition of gemcitabine remains the low level of drug encapsulation in vesicles, which can be overcome by selecting a lipid composition or developing a rational loading method.
Conclusion. The literature data on the use of gemcitabine in the treatment of malignant neoplasms and the prospects for developing its liposomal delivery system have been systematized and summarized. It has been shown that the inclusion of gemcitabine in liposomes allows eliminating the problems associated with antitumor therapy with this drug.
About the Authors
G. A. OborotovRussian Federation
Grigory Alexandrovich Oborotov
24 Kashirskoe Shosse, Moscow 115522; Bld. 8, 2 Trubetskaya St., Moscow 119048
M. V. Dmitrieva
Russian Federation
Maria V. Dmitrieva
24 Kashirskoe Shosse, Moscow 115522
A. P. Kolpaksidi
Russian Federation
Alexandr P. Kolpaksidi
24 Kashirskoe Shosse, Moscow 115522
S. D. Shceglov
Russian Federation
Stepan D. Shceglov
24 Kashirskoe Shosse, Moscow 115522; Bld. 8, 2 Trubetskaya St., Moscow 119048
I. I. Krasniuk
Russian Federation
Ivan I. Krasniuk
Bld. 8, 2 Trubetskaya St., Moscow 119048
References
1. Wu H.L., Zhou H.X., Chen L.M., Wang S.S. Metronomic chemotherapy in cancer treatment: new wine in an old bottle. Theranostics 2024;14(9):3548–64. DOI:10.7150/thno.95619
2. Gao Y., Huang Y., Ren C. et al. Construction of cisplatin-18crown-6 complexes through supramolecular chemistry to improve solubility, stability, and antitumor activity. Int J Mol Sci 2024;25(24):13411. DOI:10.3390/ijms252413411
3. Yousfan A., Moursel N., Hanano A. Encapsulation of paclitaxel into date palm lipid droplets for enhanced brain cancer therapy. Sci Rep 2024;14(1):32057. DOI:10.1038/s41598-024-83715-7
4. Oun R., Moussa Y.E., Wheate N.J. The side effects of platinumbased chemotherapy drugs: a review for chemists. Dalton Trans 2018;47(19):6645–53. DOI: 10.1039/c8dt00838h
5. Bukowski K., Kciuk M., Kontek R. Mechanisms of multidrug resistance in cancer chemotherapy. Int J Mol Sci 2020;21(9):3233. DOI:10.3390/ijms21093233
6. Shi Y., van der Meel R., Chen X., Lammers T. The EPR effect and beyond: strategies to improve tumor targeting and cancer nanomedicine treatment efficacy. Theranostics 2020;10(17):7921–4. DOI:10.7150/thno.49577
7. Burdaev N.I., Nikolaeva L.L., Kosenko V.V. et al. Liposomes as drug carriers: classification, preparation methods, and medicinal use. Vedomosti Nauchnogo centra jekspertizy sredstv medicinskogo primenenija. Reguljatornye issledovanija i jekspertiza lekarstvennyh sredstv = Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. Regulatory Research and Medicine Evaluation 2023;13(2–1):316–32. (In Russ.). DOI:10.30895/1991-2919-2023-508
8. Shah S., Dhawan V., Holm R. et al. Liposomes: advancements and innovation in the manufacturing process. Adv Drug Deliv Rev 2020;154-155:102–22. DOI:10.1016/j.addr.2020.07.002
9. Lu W., Yao J., Zhu X., Qi Y. Nanomedicines: redefining traditional medicine. Biomed Pharmacother 2021;134:111103. DOI:10.1016/j.biopha.2020.111103
10. Pokataev I.А., Lyadova М.А., Fedyanin М.Yu. et al. Toxicity and efficacy of gemcitabine plus nabpaclitaxel (paclitaxel + albumin) in a Russian patient population: results of a multicenter retrospective study. Zlokachestvennye opuholi = Malignant Tumours 2019;9(3):20–30. DOI:10.18027/2224-5057-2019-9-3-20-30
11. Beutel A.K., Halbrook C.J. Barriers and opportunities for gemcitabine in pancreatic cancer therapy. Am J Physiol Cell Physiol 2023;324(2):540–52. DOI: 10.1152/ajpcell.00331.2022
12. Kovalenko Yu.А., Kukeev I.А., Zharikov Yu.O., Paichadze А.А. Role of adjuvant drug therapy in combined treatment for cholangiocellular carcinoma. Voprosy onkologii = Problems in Oncology 2018;(2):171–6.
13. Heinemann V. Role of gemcitabine in the treatment of advanced and metastatic breast cancer. Oncology 2003;64(3):191–206. DOI: 10.1159/000069315
14. Berg T., Nøttrup T.J., Roed H. Gemcitabine for recurrent ovarian cancer – a systematic review and meta-analysis. Gynecol Oncol 2019;155(3):530–7. DOI:10.1016/j.ygyno.2019.09.026
15. Mirzaee E., Novin K., Fadavi P. et al. Intravesical gemcitabine for non-muscle invasive bladder cancer after bacillus calmetteguerin treatment failure: a prospective study. Asian Pac J Cancer Prev 2024;25(9):3173–7. DOI:10.31557/APJCP.2024.25.9.3173
16. Sandler A., Ettinger D.S. Gemcitabine: single-agent and combination therapy in non-small cell lung cancer. Oncologist 1999;4(3):241–51. PMID: 10394591
17. Perevodchikova N.I. Gemcitabine (Gemzar) and its place in modern antitumor chemotherapy. Russkij medicinskij zhurnal = Russian Medical Journal 2007;25:1884.
18. Li P.W., Luo S., Xiao L.Y. et al. A novel gemcitabine derivativeloaded liposome with great pancreas-targeting ability. Acta Pharmacol Sin 2019;40(11):1448–56. DOI:10.1038/s41401-019-0227-7
19. Mini E., Nobili S., Caciagli B. et al. Cellular pharmacology of gemcitabine. Ann Oncol 2006;17(Suppl. 5):v7–12. DOI:10.1093/annonc/mdj941
20. Lansakara-P D.S., Rodriguez B.L., Cui Z. Synthesis and in vitro evaluation of novel lipophilic monophosphorylated gemcitabine derivatives and their nanoparticles. Int J Pharm 2012;429(1-2): 123–34. DOI:10.1016/j.ijpharm.2012.03.014
21. Ciccolini J., Serdjebi C., Peters G.J., Giovannetti E. Pharmacokinetics and pharmacogenetics of Gemcitabine as a mainstay in adult and pediatric oncology: an EORTC-PAMM perspective. Cancer Chemother Pharmacol 2016;78(1):1–12. DOI:10.1007/s00280-016-3003-0
22. de Sousa Cavalcante L., Monteiro G. Gemcitabine: metabolism and molecular mechanisms of action, sensitivity and chemoresistance in pancreatic cancer. Eur J Pharmacol 2014;741:8–16. DOI:10.1016/j.ejphar.2014.07.041
23. Mackey J.R., Mani R.S., Selner M. et al. Functional nucleoside transporters are required for gemcitabine influx and manifestation of toxicity in cancer cell lines. Cancer Res 1998;58(19):4349–57. PMID:9766663
24. Derissen E.J.B., Beijnen J.H. Intracellular pharmacokinetics of pyrimidine analogues used in oncology and the correlation with drug action. Clin Pharmacokinet 2020;59(12):1521–50. DOI:10.1007/s40262-020-00934-7
25. Peters G.J., Clavel M., Noordhuis P. et al. Clinical phase I and pharmacology study of gemcitabine (2’,2’-difluorodeoxycytidine) administered in a two-weekly schedule. J Chemother 2007;19(2): 212–21. DOI:10.1179/joc.2007.19.2.212
26. Gemcitabine. URL: https://pubchem.ncbi.nlm.nih.gov/compound/ Gemcitabine.
27. State Register of Medicines. URL: https://grls.minzdrav.gov.ru/default.aspx.
28. Burris H.A. 3rd, Moore M.J., Andersen J. et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol 1997;15(6):2403–13. DOI:10.1200/JCO.1997.15.6.2403
29. Wei M.Y., Zhuang Y.F., Wang W.M. Gemcitabine for the treatment of patients with osteosarcoma. Asian Pac J Cancer Prev 2014;15(17):7159–62. DOI:10.7314/apjcp.2014.15.17.7159
30. Sabat C., Ginestet C., Chassagnon G. Gemcitabine and nab-paclitaxel induced interstitial pneumonia. Diagn Interv Imaging 2021;102(12):763–4. DOI:10.1016/j.diii.2021.09.005
31. Khan M.F., Gottesman S., Boyella R., Juneman E. Gemcitabineinduced cardiomyopathy: a case report and review of the literature. J Med Case Rep 2014;8:220. DOI:10.1186/1752-1947-8-220
32. Moysan E., Bastiat G., Benoit J.P. Gemcitabine versus modified gemcitabine: a review of several promising chemical modifications. Mol Pharm 2013;10(2):430–44. DOI:10.1021/mp300370t
33. Zheng H., Yang F. Gemcitabine in treating patients with refractory or relapsed multiple myeloma. Asian Pac J Cancer Prev 2014;15(21):9291–3. DOI:10.7314/apjcp.2014.15.21.9291
34. Björn N., Jakobsen I., Udagawa C. et al. The association of four genetic variants with myelosuppression in gemcitabinetreated Japanese is not evident in gemcitabine/carboplatin-treated Swedes. Basic Clin Pharmacol Toxicol 2022;130(4):513–21. DOI:10.1111/bcpt.13712
35. Dora C.P., Kushwah V., Yadav V. et al. Gemcitabinephospholipid complex loaded lipid nanoparticles for improving drug loading, stability, and efficacy against pancreatic cancer. Mol Pharm 2024;21(6):2699–712. DOI:10.1021/acs.molpharmaceut.3c00983
36. Wang M., Cai R., Zhang Z. et al. NIR-responsive CN-Pt-GEM hydrogel induces necroptosis and immunotherapeutic responses prevent postoperative recurrence and wound infection in lung carcinoma. J Nanobiotechnology 2024;22(1):355. DOI:10.1186/s12951-024-02568-4
37. Kim B., Park H., Liu H. et al. Hybrid nanoparticles of extracellular vesicles and gemcitabine prodrug-loaded liposomes with enhanced targeting ability for effective pdac treatment. ACS Appl Bio Mater 2024;7(9):6025–33. DOI: 10.1021/acsabm.4c00658
38. Xu H., Paxton J., Lim J. et al. Development of high-content gemcitabine PEGylated liposomes and their cytotoxicity on drugresistant pancreatic tumour cells. Pharm Res. 2014;31(10):2583–92. DOI: 10.1007/s11095-014-1353-z
39. Tamam H., Park J., Gadalla H.H. et al. Development of liposomal gemcitabine with high drug loading capacity. Mol Pharm 2019;16(7):2858–71. DOI:10.1021/acs.molpharmaceut.8b01284
40. Levine M., Skolnik A.B., Ruha A.M. et al. Complications following antidotal use of intravenous lipid emulsion therapy. J Med Toxicol 2014;10(1):10–4. DOI:10.1007/s13181-013-0356-1
41. Tucci S.T., Kheirolomoom A., Ingham E.S. et al. Tumor-specific delivery of gemcitabine with activatable liposomes. J Control Release 2019;309:277–88. DOI:10.1016/j.jconrel.2019.07.014
42. Zhang X.J., Jiang X.Y., Ma Y.L. et al. Encapsulating taurine into liposomes: A promising therapeutic for liver fibrosis. World J Gastroenterol 2024;30(41):4509–13. DOI:10.3748/wjg.v30.i41.4509
43. Large D.E., Abdelmessih R.G., Fink E.A., Auguste D.T. Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv Drug Deliv Rev 2021;176:113851. DOI:10.1016/j.addr.2021.113851
44. Tang M., Yarragudi S.B., Pan P. et al. Effect of size and pH-sensitivity of liposomes on cellular uptake pathways and pharmacokinetics of encapsulated gemcitabine. J Liposome Res 2025;35(1):44–54. DOI:10.1080/08982104.2024.2389969
45. Aparicio-Lopez C.B., Timmerman S., Lorino G. et al. thermosensitive liposomes for gemcitabine delivery to pancreatic ductal adenocarcinoma. Cancers (Basel) 2024;16(17):3048. DOI:10.3390/cancers16173048
46. Kim D.H., Im B.N., Hwang H.S., Na K. Gemcitabine-loaded DSPE-PEG-PheoA liposome as a photomediated immune modulator for cholangiocarcinoma treatment. Biomaterials 2018;183:139–50. DOI:10.1016/j.biomaterials.2018.08.052
47. Tang Z., Feng W., Yang Y., Wang Q. Gemcitabine-loaded RGD modified liposome for ovarian cancer: preparation, characterization and pharmacodynamic studies. Drug Des Devel Ther 2019;13:3281–90. DOI:10.2147/DDDT.S211168
48. Zheng Z., Li M., Yang J. et al. Growth inhibition of pancreatic cancer by targeted delivery of gemcitabine via fucoidan-coated pH-sensitive liposomes. Int J Biol Macromol 2024;277(Pt 3):134517. DOI:10.1016/j.ijbiomac.2024.134517
49. Affram K., Udofot O., Singh M. et al. Smart thermosensitive liposomes for effective solid tumor therapy and in vivo imaging. PLoS One 2017;12(9):e0185116. DOI:10.1371/journal.pone.0185116
50. Gandhi M., Pandya T., Gandhi R. et al. Inhalable liposomal dry powder of gemcitabine-HCl: Formulation, in vitro characterization and in vivo studies. Int J Pharm 2015;496(2):886–95. DOI: 10.1016/j.ijpharm.2015.10.020
51. Liu Y., Tamam H., Yeo Y. Mixed liposome approach for ratiometric and sequential delivery of paclitaxel and gemcitabine. AAPS PharmSciTech 2018;19(2):693–9. DOI: 10.1208/s12249-017-0877-z
52. Inhalation therapy. Ed. by S.N. Avdeev, V.V. Archipov. Moscow: GEOTAR-Media, 2022; 318 p.
53. Ignatova GL, Belevsky AS. Modern methods of inhaled drug delivery in the treatment of bronchobstructive diseases. Astma i allergija = Asthma & Allergy 2018;2:21–8.
54. Zucker D., Marcus D., Barenholz Y., Goldblum A. Liposome drugs’ loading efficiency: a working model based on loading conditions and drug’s physicochemical properties. J Control Release 2009;139(1):73–80. DOI:10.1016/j.jconrel.2009.05.036
55. Omar M.M., Hasan O.A., Zaki R.M., Eleraky N.E. Externally triggered novel rapid-release sonosensitive folate-modified liposomes for gemcitabine: development and characteristics. Int J Nanomedicine 2021;16:683–700. DOI:10.2147/IJN.S266676
56. Liu J., Han Y., Zhao M. et al. Unlocking the power of immunotherapy: Combinatorial delivery of plasmid IL-15 and gemcitabine to synergistically remodeling the tumor microenvironment. Int J Pharm 2024;655:124027. DOI: 10.1016/j.ijpharm.2024.124027
57. A phase 1 dose-escalation study of FF-10832 for treatment of solid tumors including biliary tract cancer. URL: https://clinicaltrials.gov/study/NCT03440450?term=liposomal%20gemcitabine&page=9&rank=87.
58. Higuchi T., Yokobori T., Takahashi R. et al. FF-10832 enables long survival via effective gemcitabine accumulation in a lethal murine peritoneal dissemination model. Cancer Sci 2019;110(9):2933–40. DOI: 10.1111/cas.14123
59. Matsumoto T., Komori T., Yoshino Y. et al. A liposomal gemcitabine, FF-10832, improves plasma stability, tumor targeting, and antitumor efficacy of gemcitabine in pancreatic cancer xenograft models. Pharm Res 2021;38(6):1093–106. DOI:10.1007/s11095-021-03045-5
60. Shin D.H., Koo M.J., Kim J.S. Herceptin-conjugated temperaturesensitive immunoliposomes encapsulating gemcitabine for breast cancer. Arch Pharm Res 2016;39(3):350–8. DOI:10.1007/s12272-016-0707-y
61. Tang H., Zhang Z., Zhu M. et al. Efficient delivery of gemcitabine by estrogen receptor-targeted pegylated liposome and its anti-lung cancer activity in vivo and in vitro. Pharmaceutics 2023;15(3):988. DOI:10.3390/pharmaceutics15030988
62. Celano M., Calvagno M.G., Bulotta S. et al. Cytotoxic effects of gemcitabine-loaded liposomes in human anaplastic thyroid carcinoma cells. BMC Cancer 2004;4:63. DOI:10.1186/1471-2407-4-63
63. Borazanci E.H., Janku F., Hamilton E.P. et al. A phase 1, first-in-human, dose-escalation and biomarker trial of liposomal gemcitabine (FF-10832) in patients with advanced solid tumors. J Clin Oncol 2022;40(16):3097. DOI:10.1200/JCO.2022.40.16_suppl.3097
64. Langer C.J., Curti B.D., Farber C.M. et al. A phase 2a safety run-in and preliminary efficacy study of liposomal gemcitabine (FF-10832) in combination with pembrolizumab in patients with advanced solid tumors. J Clin Oncol 2024;42(Suppl. 16): 2615. DOI:10.1200/JCO.2024.42.16_suppl.2615
Review
For citations:
Oborotov G.A., Dmitrieva M.V., Kolpaksidi A.P., Shceglov S.D., Krasniuk I.I. Prospects for the creation of a liposomal gemcitabine delivery system. Russian Journal of Biotherapy. 2025;24(1):46-56. (In Russ.) https://doi.org/10.17650/1726-9784-2025-24-1-46-56