Osteoconductivity and biocompatibility of beta-titanium alloy Ti-15Mo with biomimetic coating in vitro
https://doi.org/10.17650/1726-9784-2025-24-1-87-96
Abstract
Background. One of the most important tasks for modern orthopedics is the development of materials for permanent (non-removable) implants with high mechanical properties on the one hand, and high biocompatibility and bioactivity on the other hand. In the present work we propose an approach to solving this problem consisting in the formation of ultrafine-grained (UFG) structure in low-modulus pseudo-β-titanium alloy Ti-15Mo and modification of its surface by plasma electrolytic oxidation (PEO).
Aim. To evaluate the influence of structure and PEO modes on the peculiarities of Ti-15Mo alloy porous coating formation, its biocompatibility and adhesion activity of mesenchymal multipotent cells.
Materials and methods. The material of the study was UFG pseudo β-titanium alloy Ti-15Mo with modified surface by PEO method. To investigate the biocompatibility of uncoated and PEO-coated samples, a comparative study of their hemolytic activity and cytotoxicity in vitro was carried out. To evaluate the osteoconductivity, the stimulation of cell adhesion by the alloy samples was studied.
Results. Surface modification of Ti-15Mo alloy by PEO method resulted in the formation of coatings with developed pore system. Such topography of the coatings is close to the topography of the bone tissue that increases the area of the implant/bone contact, positively influences the osteointegration of the cells – osteoblasts and reduces the terms of the implant engraftment. It is shown that the samples from UFG alloy with PEO coatings have no toxic effect on blood cells and promote adhesion of mesenchymal multipotent cells – osteoblast precursors, which can be considered as an indicator of osteoconductivity of the modified titanium alloy surface.
Conclusion. The obtained results testify to the prospects of this development of bioimplants creation for the purposes of traumatology, orthopedics and oncology.
Keywords
About the Authors
S. A. GatinaRussian Federation
Svetlana Azatovna Gatina
32 Z. Validi St., Ufa 450076
A. A. Gaysina
Russian Federation
Azaliya A. Gaysina
32 Z. Validi St., Ufa 450076
V. V. Polyakova
Russian Federation
Veronika V. Polyakova
32 Z. Validi St., Ufa 450076
V. R. Aubakirova
Russian Federation
Veta R. Aubakirova
32 Z. Validi St., Ufa 450076
N. Yu. Anisimova
Russian Federation
Natalia Yu. Anisimova
24 Kashirskoe Shosse, Moscow 115522
N. А. Enikeev
Russian Federation
Nariman A. Enikeev
32 Z. Validi St., Ufa 450076
References
1. Schwartz A., Farley K., Guild G., Bradbury T. Projections and epidemiology of revision hip and knee arthroplasty in the United States to 2030. J Arthroplasty 2020;35:79–85. DOI: 10.1016/j.arth.2020.02.030
2. Anisimova N.Yu., Martynenko N.S., Rybalchenko O.V. et al. Bioimplants for the reconstructive surgery and local delivery of chemo-immunoagents. In: Interdisciplinary Cancer Research. Springer, Cham, 2024: p. 1–43. DOI: 10.1007/16833_2024_374
3. Zhang L.-C., Chen L.-Y. A review on biomedical titanium alloys: recent progress and prospect. Adv Eng Mater 2019;21:1801215. DOI:10.1002/adem.201801215
4. Campos F.O., Araujo A.C., Kapoor Sh.G. Experimental comparison of micromilling pure titanium and Ti-6Al-4V. J Micro Nano-Manuf 2019;7(2):024506. DOI: 10.1115/1.4043501
5. Cardoso G.C., Buzalaf M.A.R., Correa D.R.N., Grandini C.R. Effect of thermomechanical treatments on microstructure, phase composition, vickers microhardness, and young’s modulus of TixNb-5Mo alloys for biomedical applications. Metals 2022;12(5):788. DOI: 10.3390/met12050788
6. Gatina S., Semenova I., Ubyyvovk E., Valiev R. Phase transformations, strength, and modulus of elasticity of Ti-15Mo alloy obtained by high-pressure torsion. Inorg Mater Appl Res 2018;9:14–20. DOI: 10.1134/S2075113318010136
7. Pesode P., Barve S. A review – metastable β titanium alloy for biomedical applications. J Eng Appl Sci 2023;70:25. DOI:10.1186/s44147-023-00196-7
8. Pires L.C., Guastaldi F.P., Nogueira A.V. et al. Physicochemical, morphological, and biological analyses of Ti-15Mo alloy surface modified by laser beam irradiation. Lasers Med Sci 2019;34(3):537–46. DOI: 10.1007/s10103-018-2626-2
9. Leśniak-Ziółkowska K., Kazek-Kęsik A., Rokosz K. et al. Electrochemical modification of the Ti-15Mo alloy surface in solutions containing ZnO and Zn3(PO4)2 particles. Mater Sci Eng C Mater Biol Appl 2020;115. DOI: 10.1016/j.msec.2020.111098
10. Avila G., Misch K., Galindo-Moreno P., Wang H.L. Implant surface treatment using biomimetic agents. Implant Dent 2009;18(1):17–26. DOI: 10.1097/ID.0b013e318192cb7d
11. Wang M., Castro N.J., Li J. et al. Greater osteoblast and mesenchymal stem cell adhesion and proliferation on titanium with hydrothermally treated nanocrystalline hydroxyapatite/magnetically treated carbon nanotubes. J Nanosci Nanotechnol 2012;12(10):7692–702. DOI: 10.1166/jnn.2012.6624
12. Cardoso G., Grandini C., Rau J. Comprehensive review of PEO coatings on titanium alloys for biomedical implants. J Mater Res Technol 2024;31(4):311–28. DOI: 10.1016/j.jmrt.2024.06.068
13. Semenova I.P., Gatina S.A., Zhernakov V.S., Miloš J. Improving in fatigue strength of biomedical Ti-15Mo alloy while retaining low elastic modulus through severe plastic deformation. In: Proceedings of the 13th World Conference on Titanium. USA, 2016; p. 1777–1781 DOI: 10.1002/9781119296126.ch298
14. Polyakova V.V., Gatina S.A., Stotskiy A.G. et al. Dependence of α-phase particle morphology in aged metastable β Ti-15Mo alloy on the shear deformation degree. Mater Letters 2024;14(1):39–44. DOI:10.48612/letters/2024-1-39-44
15. Martynenko N.S., Anisimova N.Yu., Kiselevskiy M.V. et al. Investigation biocompatibility in vitro of ultrafine-grained Zn-based bioresorbable alloys. Rossijskij bioterapevticeskij zurnal = Russian Journal of Biotherapy 2022;3(21):40–9. (In Russ.). DOI: 10.17650/1726-9784-2022-21-3-40-49
16. Chen X., Xie W., Zhang M. et.al. The emerging role of noncoding RNAs in osteogenic differentiation of human bone marrow mesenchymal stem cells. Front Cell Dev Biol 2022;10:903278. DOI: 10.3389/fcell.2022.903278
17. Souza J.C.M., Sordi M.B., Kanazawa M. et al. Nano-scale modification of titanium implant surfaces to enhance osseointegration. Acta Biomater 2019;94:112–31. DOI: 10.1016/j.actbio.2019.05.045
18. Santander S., Alcaine C., Lyahyai J. et al. In vitro osteoinduction of human mesenchymal stem cells in biomimetic surface modified titanium alloy implants. Dent Mater J 2014;33(3):305–12. DOI: 10.4012/dmj.2012-015-r
19. Gatina S.A., Polyakova V.V., Modina I.M., Semenova I.P. Fatigue behavior and fracture features of Ti-15Mo alloy in β-, (α + β)-, and ultrafine-grained two-phase states. Metals 2023;13(3):580. DOI:10.3390/met13030580
20. Gatina S.A., Polyakova V.V., Polyakov A.V., Semenova I.P. Microstructure and mechanical properties of β-titanium Ti-15Mo alloy produced by combined processing including ECAP-conform and drawing. Materials 2022;15(23):8666. DOI: 10.3390/ma15238666
21. Edalati K., Bachmaier A., Beloshenko V.A. et al. Nanomaterials by severe plastic deformation: review of historical developments and recent advances. Materials Res Letters 2022;10(4):163–256. DOI: 10.1080/21663831.2022.2029779
22. Valiev R., Parfenov E., Parfenova L. Developing nanostructured metals for manufacturing of medical implants with improved design and biofunctionality. Mater Trans 2019;60(7):1356–66. DOI: 10.2320/matertrans.MF201943
23. Santos-Coquillat A., Martínez-Campos E., Mohedano M. In vitro and in vivo evaluation of PEO-modified titanium for bone implant applications. Surf Coat Technol 2018;347:358–68. DOI:10.1016/j.surfcoat.2018.04.051
24. Pantaroto H.N., Ricomini-Filho A.P., Bertolini M.M. et al. Antibacterial photocatalytic activity of different crystalline TiO 2 phases in oral multispecies biofilm. Dental Materials 2018;34(7):182–95. DOI:10.1016/j.dental.2018.03.011
Review
For citations:
Gatina S.A., Gaysina A.A., Polyakova V.V., Aubakirova V.R., Anisimova N.Yu., Enikeev N.А. Osteoconductivity and biocompatibility of beta-titanium alloy Ti-15Mo with biomimetic coating in vitro. Russian Journal of Biotherapy. 2025;24(1):87-96. (In Russ.) https://doi.org/10.17650/1726-9784-2025-24-1-87-96