Preview

Russian Journal of Biotherapy

Advanced search

Molecular genetic features of osteoarthritis immune mechanisms

https://doi.org/10.17650/1726-9784-2025-24-2-10-21

Abstract

Background. Osteoarthritis (OA) is characterized by heterogeneity of clinical manifestations and, in some cases, a severe progressive course. In this regard, it is important to identify new molecular targets for the treatment of the disease.

Aim. To determine the role of pathological immune processes, specific genetic and epigenetic changes in OA, identification of OA-specific microRNAs and potential targets for targeted therapy.

Materials and methods. To prepare the review, scientific platforms PubMed, Scopus, ResearchGate, RSCI were used to search for information. The search words and phrases were: “osteoarthritis genes meta-analysis”, “osteoarthritis genes”, “miRNAs osteoarthritis”.

Results. Data were obtained on the involvement of pathological immune reactions in the mechanism of OA with changes in the expression of 34 specific genes involved in the functioning of the immune system by immune cells infiltrating joints. Clinical studies have determined the association of allelic variants of C5AR1, FCGR2B, HLA-DR2, HLA-DR5, IL1B, IL1RN, IL4R, IL6, IL10, IL17, TYROBP, TLR3, TLR4, TLR7, TLR9, TLR10 genes, involved in the regulation of immune system functioning. Changes in the expression of 11 specific microRNAs involved in inflammatory and degenerative processes in OA were identified.

Conclusion. Molecular genetic studies make it possible to find new markers of pathological immune reactions in OA, the presence of which in patients can be used to determine methods of treating the disease to prevent rapid progression of the disease, as well as to design targeted therapy. An important role of disturbances in the expression of genes involved in the functioning of the immune system in the pathogenesis of the disease was identified. MicroRNAs associated with OA involved in the pathogenesis of immune changes may become promising tools for targeted therapy of OA. Analysis of the reviewed materials indicates that the use of microRNAs that affect retroelements involved in the pathogenesis of OA can become the basis not only for suppressing the progression of the pathology, but also for slowing down the aging process.

About the Author

R. N. Mustafin
Bashkir State Medical University, Ministry of Health of Russia
Russian Federation

Rustam N. Mustafin.

3 Lenin St., Ufa 450008



References

1. Chen J., Chen S., Cai D. et al. The role of Sirt6 in osteoarthritis and its effect on macrophage polarization. Bioengineered 2022;13(4):9677–89. DOI: 10.1080/21655979.2022.2059610

2. Gilbert S.J., Blain E.J., Mason D.J. Interferon-gamma modulates articular chondrocyte and osteoblast metabolism through protein kinase R-independent and dependent mechanisms. Biochem Biophys Rep 2022;32:101323. DOI: 10.1016/j.bbrep.2022.101323

3. Vos T., Flaxman A.D., Naghavi M. et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012;380:2163–96. DOI: 10.1016/S0140-6736(12)61729-2

4. Sereda A.P., Kochish A.A., Cherny A.A. et al. Epidemiology of hip and knee arthroplasty and periprosthetic joint infection in Russian federation. Travmatologiya y ortopediya v Rossii = Traumatology and Orthopedics in Russia 2021;27(3):84–93. (In Russ.). DOI: 10.21823/2311-2905-2021-27-3-84-93

5. De Cecco M., Ito T., Petrashen A.P. et al. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 2019;566(7742):73–8. DOI: 10.1038/s41586-018-0784-9

6. Gorbunova V., Seluanov A., Mita P. et al. The role of retrotransposable elements in ageing and age-associated diseases. Nature 2021;596(7870):43–53. DOI: 10.1038/s41586-021-03542-y

7. Van Meter M., Kashyap M., Rezazadeh S. et al. SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age. Nat Commun 2014;5:5011. DOI: 10.1038/ncomms6011

8. Zhou F., Mei J., Han X. et al. Kinsenoside attenuates osteoarthritis by repolarizing macrophages through inactivating NF-κB/MAPK signaling and protecting chondrocytes. Acta Pharm Sin B 2019;9(5):973–85. DOI: 10.1016/j.apsb.2019.01.015

9. Knights A.J., Redding S.J., Maerz T. Inflammation in osteoarthritis: the latest progress and ongoing challenges. Curr Opin Rheumatol 2023;35(2):128–34. DOI: 10.1097/BOR.0000000000000923

10. Simon T.C., Jeffries M.A. The epigenomic landscape in osteoarthritis. Curr Rheumatol Rep 2017;19(6):30. DOI: 10.1007/s11926-017-0661-9

11. Mustafin R.N., Khusnutdinova E.K. Non-coding parts of genomes as the basis of epigenetic heredity. Vavilov Journal of Genetics and Breeding 2017;21(6):742–9.

12. Wei G., Qin S., Li W. et al. MDTE DB: a database for microRNAs derived from Transposable element. IEEE/ACM Trans Comput Biol Bioinform 2016;13(6):1155–60. DOI: 10.1109/TCBB.2015.2511767

13. Johnson R., Guigo R. The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs. RNA 2014;20(7):959–76. DOI: 10.1261/rna.044560.114

14. Uhalte E.C., Wilkinson J.M., Southam L., Zeggini E. Pathways to understanding the genomic aetiology of osteoarthritis. Hum Mol Genet 2017;26:R193–201. DOI: 10.1093/hmg/ddx302

15. Zhang J., Zhang S., Zhou Y. et al. KLF9 and EPYC acting as feature genes for osteoarthritis and their association with immune infiltration. J Orthop Surg Res 2022;17(1):365. DOI: 10.1186/s13018-022-03247-6

16. Xu W.D., Huang Q., Huang A.F. Emerging role of galectin family in inflammatory autoimmune diseases. Autoimmun Rev 2021;20(7):102847. DOI: 10.1016/j.autrev.2021.102847

17. Colasanti T., Sabatinelli D., Mancone C. et al. Homocysteinylated alpha 1 antitrypsin as an antigenic target of autoantibodies in seronegative rheumatoid arthritis patients. J Autoimmun 2020;113:102470. DOI: 10.1016/j.jaut.2020.102470

18. Kenny J., Mullin B.H., Tomlinson W. et al. Age-dependent genetic regulation of osteoarthritis: independent effects of immune system genes. Arthritis Res Ther 2023;25(1):232. DOI: 10.1186/s13075-023-03216-2

19. Goldmann K., Spiliopoulou A., Iakovliev A. et al. Expression quantitative trait loci analysis in rheumatoid arthritis identifies tissue specific variants associated with severity and outcome. Ann Rheum Dis 2024;83(3):288–99. DOI: 10.1136/ard-2023-224540

20. Szulc M., Swatkowska-Stodulska R., Pawlowska E., Derwich M. Vitamin D metabolism and its role in temporomandibular joint osteoarthritis and autoimmune thyroid diseases. Int J Mol Sci 2023;24(4):4080. DOI: 10.3390/ijms24044080

21. Jian J., Li G., Hettinghouse A., Liu C. Progranulin: A key player in autoimmune diseases. Cytokine 2018;101:48–55. DOI: 10.1016/j.cyto.2016.08.007

22. Akhter S., Tasnim F.M., Islam M.N. et al. Role of Th17 and Il-17 cytokines on inflammatory and auto-immune diseases. Curr Pharm Des 2023;29(26):2078–90. DOI: 10.2174/1381612829666230904150808

23. Saetan N., Honsawek S., Tanavalee S. et al. Association of plasma and synovial fluid interferon-γ inducible protein-10 with radiographic severity in knee osteoarthritis. Clin Biochem 2011;44(14-15):1218–22. DOI: 10.1016/j.clinbiochem.2011.07.010

24. Li S., Ren Y., Peng D. et al. TIM-3 genetic variations affect susceptibility to osteoarthritis by interfering with interferon gamma in CD4+ T cells. Inflammation 2015;38(5):1857–63. DOI: 10.1007/s10753-015-0164-7

25. Guo Q., Chen X., Chen J. et al. STING promotes senescence, apoptosis, and extracellular matrix degradation in osteoarthritis via the NF-κB signaling pathway. Cell Death Dis 2021;12(1):13. DOI: 10.1038/s41419-020-03341-9

26. de Groen R.A., Liu B.S., Boonstra A. Understanding IFNλ in rheumatoid arthritis. Arthritis Res Ther 2014;16(1):102. DOI: 10.1186/ar4445

27. Lee Y.H., Song G.G. Association between the interferon-γ + 874 T/A polymorphism and susceptibility to systemic lupus erythematosus and rheumatoid arthritis: A meta-analysis. Int J Immunogenet 2022;49(6):365–71. DOI: 10.1111/iji.12599

28. Toro-Domínguez D., Carmona-Sáez P., Alarcón-Riquelme M.E. Shared signatures between rheumatoid arthritis, systemic lupus erythematosus and Sjögren’s syndrome uncovered through gene expression meta-analysis. Arthritis Res Ther 2014;16(6):489. DOI: 10.1186/s13075-014-0489-x

29. Xu J., Chen K., Yu Y. et al. Identification of immune-related risk genes in osteoarthritis based on bioinformatics analysis and machine learning. J Pers Med 2023;13(2):367. DOI: 10.3390/jpm13020367

30. Li J., Wang G., Xv X. et al. Identification of immune-associated genes in diagnosing osteoarthritis with metabolic syndrome by integrated bioinformatics analysis and machine learning. Front Immunol 2023;14:1134412. DOI: 10.3389/fimmu.2023.1134412

31. Gomes da Silva I.I.F., Barbosa A.D., Souto F.O. et al. MYD88, IRAK3 and rheumatoid arthritis pathogenesis: analysis of differential gene expression in CD14+ monocytes and the inflammatory cytokine levels. Immunobiology 2021;226(6):152152. DOI: 10.1016/j.imbio.2021.152152

32. Zhang Q., Sun C., Liu X. et al. Mechanism of immune infiltration in synovial tissue of osteoarthritis: a gene expression-based study. J Orthop Surg Res 2023;18(1):58. DOI: 10.1186/s13018-023-03541-x

33. Pan L., Yang F., Cao X. et al. Identification of five hub immune genes and characterization of two immune subtypes of osteoarthritis. Front Endocrinol (Lausanne) 2023;14:1144258. DOI: 10.3389/fendo.2023.1144258

34. Cheng P., Gong S., Guo C. et al. Exploration of effective biomarkers and infiltrating Immune cells in osteoarthritis based on bioinformatics analysis. Artif Cells Nanomed Biotechnol 2023;51(1):242–54. DOI: 10.1080/21691401.2023.2185627

35. Xia D., Wang J., Yang S. et al. Identification of key genes and their correlation with immune infiltration in osteoarthritis using integrative bioinformatics approaches and machine-learning strategies. Medicine (Baltimore) 2023;102(46):e35355. DOI: 10.1097/MD.0000000000035355

36. Qin J., Zhang J., Wu J.J. et al. Identification of autophagy-related genes in osteoarthritis articular cartilage and their roles in immune infiltration. Front Immunol 2023;14:1263988. DOI: 10.3389/fimmu.2023.1263988

37. Wang L., Ye S., Qin J. et al. Ferroptosis-related genes LPCAT3 and PGD are potential diagnostic biomarkers for osteoarthritis. J Orthop Surg Res 2023;18(1):699. DOI: 10.1186/s13018-023-04128-2

38. Xu L., Wang Z., Wang G. Screening of biomarkers associated with osteoarthritis aging genes and immune correlation studies. Int J Gen Med 2024;17:205–24. DOI: 10.2147/IJGM.S447035

39. Yang L., Chen Z., Guo H. et al. Extensive cytokine analysis in synovial fluid of osteoarthritis patients. Cytokine 2021;143:155546. DOI: 10.1016/j.cyto.2021.155546

40. Liu Y., Lu T., Liu Z. et al. Six macrophage-associated genes in synovium constitute a novel diagnostic signature for osteoarthritis. Front Immunol 2022;13:936606. DOI: 10.3389/fimmu.2022.936606

41. Zhang B., Gu J., Wang Y. et al. TNF-α stimulated exosome derived from fibroblast-like synoviocytes isolated from rheumatoid arthritis patients promotes HUVEC migration, invasion and angiogenesis by targeting the miR-200a-3p/KLF6/ VEGFA axis. Autoimmunity 2023;56(1):2282939. DOI: 10.1080/08916934.2023.2282939

42. Ye Y., Bao C., Fan W. Overexpression of miR-101 may target DUSP1 to promote the cartilage degradation in rheumatoid arthritis. J Comput Biol 2019;26(10):1067–79. DOI: 10.1089/cmb.2019.0021

43. Chen M., Li M., Zhang N. et al. Mechanism of miR-218-5p in autophagy, apoptosis and oxidative stress in rheumatoid arthritis synovial fibroblasts is mediated by KLF9 and JAK/ STAT3 pathways. J Investig Med 2021;69(4):824–32. DOI: 10.1136/jim-2020-001437

44. Cortes-Altamirano J.L., Morraz-Varela A., Reyes-Long S. et al. Chemical mediators’ expression associated with the modulation of pain in rheumatoid arthritis. Curr Med Chem 2020;27(36): 6208–18. DOI: 10.2174/0929867326666190816225348

45. Morel J., Roch-Bras F., Molinari N. et al. HLA-DMA*0103 and HLA-DMB*0104 alleles as novel prognostic factors in rheumatoid arthritis. Ann Rheum Dis 2004;63(12):1581–6. DOI: 10.1136/ard.2003.012294

46. Rong H., He X., Wang L. et al. Association between IL1B polymorphisms and the risk of rheumatoid arthritis. Int Immunopharmacol 2020;83:106401. DOI: 10.1016/j.intimp.2020.106401

47. Liu X., Peng L., Li D. et al. The impacts of IL1R1 and IL1R2 genetic variants on rheumatoid arthritis risk in the chinese han population: a case-control study. Int J Gen Med 2021;14:2147–59. DOI: 10.2147/IJGM.S291395

48. Hernández-Bello J., Oregón-Romero E., Vázquez-Villamar M. et al. Aberrant expression of interleukin-10 in rheumatoid arthritis: relationship with IL-10 haplotypes and autoantibodies. Cytokine 2017;95:88–96. DOI: 10.1016/j.cyto.2017.02.022

49. Mandik-Nayak L., DuHadaway J.B., Mulgrew J. et al. RhoB blockade selectively inhibits autoantibody production in autoimmune models of rheumatoid arthritis and lupus. Dis Model Mech 2017;10(11):1313–22. DOI: 10.1242/dmm.029835

50. Fida S., Myers M.A., Whittingham S. et al. Autoantibodies to the transcriptional factor SOX13 in primary biliary cirrhosis compared with other diseases. J Autoimmun 2002;19(4):251–7. DOI: 10.1006/jaut.2002.0622

51. Lee Y.H., Song G.G. Associations between TNFAIP3 polymorphisms and rheumatoid arthritis: a systematic review and meta-analysis update with trial sequential analysis. Public Health Genomics 2022;12:1–11. DOI: 10.1159/000526212

52. Okada Y., Wu D., Trynka G. et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 2014;506(7488):376–81. DOI: 10.1038/nature12873

53. Mousavi M.J., Shayesteh M.R.H., Jamalzehi S. et al. Association of the genetic polymorphisms in inhibiting and activating molecules of immune system with rheumatoid arthritis: a systematic review and meta-analysis. J Res Med Sci 2021;26:22. DOI: 10.4103/jrms.JRMS_567_20

54. Budhiparama N.C., Lumban-Gaol I., Sudoyo H. et al. Interleukin-1 genetic polymorphisms in knee osteoarthritis: What do we know? A meta-analysis and systematic review. J Orthop Surg (Hong Kong) 2022;30(1):23094990221076652. DOI: 10.1177/23094990221076652

55. Deng X., Ye K., Tang J. et al. Association of rs1800795 and rs1800796 polymorphisms in interleukin-6 gene and osteoarthritis risk: evidence from a meta-analysis. Nucleosides Nucleotides Nucleic Acids 2023;42:328–42. DOI: 10.1080/15257770.2022.2147541

56. Lu F., Liu P., Zhang Q. et al. Association between the polymorphism of IL-17A and IL-17F gene with knee osteoarthritis risk: a meta-analysis based on case-control studies. J Orthop Surg Res 2019;14(1):445. DOI: 10.1186/s13018-019-1495-0

57. Rogoveanu O.C., Calina D., Cucu M.G. et al. Association of cytokine gene polymorphisms with osteoarthritis susceptibility. Exp Ther Med 2018;16(3):2659–64. DOI: 10.3892/etm.2018.6477

58. Moos V., Menard J., Sieper J. et al. Association of HLA-DRB1*02 with osteoarthritis in a cohort of 106 patients. Rheumatology (Oxford) 2002;41(6):666–9. DOI: 10.1093/rheumatology/41.6.666

59. Jurynec M.J., Sawitzke A.D., Beals T.C. et al. A hyperactivating proinflammatory RIPK2 allele associated with early-onset osteoarthritis. Hum Mol Genet 2018;27(13):2383–91. DOI: 10.1093/hmg/ddy132

60. Yang H.Y., Lee H.S., Lee C.H. et al. Association of a functional polymorphism in the promoter region of TLR-3 with osteoarthritis: A two-stage case-control study. J Orthop Res 2013;31:680–5. DOI: 10.1002/jor.22291

61. Stefik D., Vranic V., Ivkovic N. et al. Potential impact of polymorphisms in Toll-like receptors 2, 3, 4, 7, 9, miR-146a, miR-155, and miR-196a genes on osteoarthritis susceptibility. Biology 2023;12:458. DOI: 10.3390/biology12030458

62. Yi X., Xu E., Xiao Y., Cai X. Evaluation of the relationship between common variants in the TLR-9 gene and hip osteoarthritis susceptibility. Genet Test Mol Biomark 2019;23(6):373–9. DOI: 10.1089/gtmb.2019.0010

63. Tang H., Cheng Z., Ma W. et al. TLR10 and NFKBIA contributed to the risk of hip osteoarthritis: systematic evaluation based on Han Chinese population. Sci Rep 2018;8:10243. DOI: 10.1038/s41598-018-28597-2

64. Wang X., Ning Y., Zhou B. et al. Integrated bioinformatics analysis of the osteoarthritis-associated microRNA expression signature. Mol Med Rep 2018;17(1):1833–8. DOI: 10.3892/mmr.2017.8057

65. Mohebi N., Damavandi E., Rostamian A.R. et al. Comparison of plasma levels of MicroRNA-155-5p, MicroRNA-210-3p, and MicroRNA-16-5p in rheumatoid arthritis patients with healthy controls in a case-control study. Iran J Allergy Asthma Immunol 2023;22(4):354–65. DOI: 10.18502/ijaai.v22i4.13608

66. Yang L., Yang S., Ren C. et al. Deciphering the roles of miR-16-5p in malignant solid tumors. Biomed Pharmacother 2022;148:112703. DOI: 10.1016/j.biopha.2022.112703

67. Liu X., Ni S., Li C. et al. Circulating microRNA-23b as a new biomarker for rheumatoid arthritis. Gene 2019;712:143911. DOI: 10.1016/j.gene.2019.06.001

68. Cheng Q., Chen X., Wu H., Du Y. Three hematologic/immune system-specific expressed genes are considered as the potential biomarkers for the diagnosis of early rheumatoid arthritis through bioinformatics analysis. J Transl Med 2021;19(1):18. DOI: 10.1186/s12967-020-02689-y

69. Zeng Z., Li Y., Pan Y. et al. Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nat Commun 2018;9(1):5395. DOI: 10.1038/s41467-018-07810-w

70. Law Y.Y., Lee W.F., Hsu C.J. et al. miR-let-7c-5p and miR-149-5p inhibit proinflammatory cytokine production in osteoarthritis and rheumatoid arthritis synovial fibroblasts. Aging (Albany NY) 2021;13(13):17227–36. DOI: 10.18632/aging.203201

71. Liu H., Yan L., Li X. et al. MicroRNA expression in osteoarthritis: a meta-analysis. Clin Exp Med 2023;23(7):3737–49. DOI: 10.1007/s10238-023-01063-8

72. Bae S.C., Lee Y.H. miR-146a levels in rheumatoid arthritis and their correlation with disease activity: a meta-analysis. Int J Rheum Dis 2018;21(7):1335–42. DOI: 10.1111/1756-185X.13338

73. Zheng J., Wang Y., Hu J. Study of the shared gene signatures of polyarticular juvenile idiopathic arthritis and autoimmune uveitis. Front Immunol 2023;14:1048598. DOI: 10.3389/fimmu.2023.1048598

74. Tavasolian F., Hosseini A.Z., Soudi S., Naderi M. miRNA-146a improves immunomodulatory effects of MSC-derived exosomes in rheumatoid arthritis. Curr Gene Ther 2020;20(4):297–312. DOI: 10.2174/1566523220666200916120708

75. Li Z., Zhao W., Wang M. et al. Role of microRNAs deregulation in initiation of rheumatoid arthritis: a retrospective observational study. Medicine (Baltimore) 2024;103(3):e36595. DOI: 10.1097/MD.0000000000036595

76. Semerci Sevimli T., Sevimli M., Qomi Ekenel E. et al. Comparison of exosomes secreted by synovial fluid-derived mesenchymal stem cells and adipose tissue-derived mesenchymal stem cells in culture for microRNA-127-5p expression during chondrogenesis. Gene 2023;865:147337. DOI: 10.1016/j.gene.2023.147337

77. Yin M., Zhang Z., Wang Y. Anti-tumor effects of miR-34a by regulating immune cells in the tumor microenvironment. Cancer Medicine 2023;12(10):11602–10. DOI: 10.1002/cam4.5826

78. Zhu J., Yang S., Qi Y. et al. Stem cell-homing hydrogel-based miR-29b-5p delivery promotes cartilage regeneration by suppressing senescence in an osteoarthritis rat model. Sci Adv 2022;8(13):eabk0011. DOI: 10.1126/sciadv.abk0011

79. Zhang Y., Li S., Jin P. et al. Dual functions of microRNA-17 in maintaining cartilage homeostasis and protection against osteoarthritis. Nat Commun 2022;13(1):2447. DOI: 10.1038/s41467-022-30119-8

80. Farghadan M., Zavaran-Hosseini A., Farhadi E. et al. MicroRNA-211-5p overexpression effect on endoplasmic reticulum stress and apoptotic genes in fibroblast-like synoviocytes of rheumatoid arthritis. Iran J Allergy Asthma Immunol 2022;21(4):418–28. DOI: 10.18502/ijaai.v21i4.10289


Review

For citations:


Mustafin R.N. Molecular genetic features of osteoarthritis immune mechanisms. Russian Journal of Biotherapy. 2025;24(2):10-21. (In Russ.) https://doi.org/10.17650/1726-9784-2025-24-2-10-21

Views: 302


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1726-9784 (Print)
ISSN 1726-9792 (Online)