Evaluation of the cytotoxic potential of liposomal gemcitabine
https://doi.org/10.17650/1726-9784-2025-24-2-83-87
Abstract
Background. Gemcitabine is used in oncology for the treatment of various solid tumors, including lung cancer. Gemcitabine exhibits high therapeutic efficacy by inhibiting DNA synthesis and inducing apoptosis in tumor cells. However, the drug has drawbacks, such as a short half-life and rapid metabolic degradation, necessitating frequent administration of high doses, which increases the risk of side effects. To reduce toxicity and enhance therapeutic efficacy, we developed a liposomal formulation of gemcitabine.
Aim. To compare the cytotoxic activity of liposomal gemcitabine and gemcitabine solution on the A549 lung cancer cell line.
Materials and methods. The cytotoxicity of liposomal gemcitabine and gemcitabine solution was evaluated on the human lung adenocarcinoma cell line A549. Cells were cultured in the presence of liposomal gemcitabine and gemcitabine solution in vitro for 72 hours, and the cytotoxicity of the drugs was assessed using the MTT assay.
Results. Liposomal gemcitabine demonstrated higher cytotoxicity compared to free gemcitabine. Half maximal inhibitory concentration value for liposomal gemcitabine was 0.47 μM, while that for free gemcitabine was 9.6 μM.
Conclusion. The liposomal form of gemcitabine exhibits significantly higher cytotoxic activity compared to the free gemcitabine solution against the A549 lung cancer cell line. Incorporation of gemcitabine into liposomes improved drug penetration into tumor cells and protected it from premature degradation.
About the Authors
G. A. OborotovRussian Federation
Grigory A. Oborotov.
24 Kashirskoe Shosse, Moscow 115522; Bld. 8, 2 Trubetskaya St., Moscow 119048
A. A. Rudakova
Russian Federation
Anna A. Rudakova.
24 Kashirskoe Shosse, Moscow 115522
M. A. Baryshnikova
Russian Federation
Maria A. Baryshnikova.
24 Kashirskoe Shosse, Moscow 115522
M. V. Dmitrieva
Russian Federation
Мaria V. Dmitrieva.
24 Kashirskoe Shosse, Moscow 115522
I. I. Krasnyuk
Russian Federation
Ivan I. Krasnyuk.
Bld. 8, 2 Trubetskaya St., Moscow 119048
References
1. Burris H.A. 3rd, Moore M.J., Andersen J. et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol 1997;15(6):2403–13. DOI: 10.1200/JCO.1997.15.6.2403
2. Heinemann V. Role of gemcitabine in the treatment of advanced and metastatic breast cancer. Oncology 2003;64(3):191–206. DOI: 10.1159/000069315
3. Pokataev I.A., Lyadova M.A., Fedyanin M.Yu. et al. Toxicity and efficacy of the combination of gemcitabine and nab-paclitaxel (paclitaxel + albumin) in the Russian population of patients with pancreatic cancer: results of a multicenter retrospective study. Malignant Tumors 2019;9(3):20–30. DOI: 10.18027/2224-5057-2019-9-3-20-30
4. Mirzaee E., Novin K., Fadavi P. et al. Intravesical gemcitabine for non-muscle invasive bladder cancer after bacillus calmette-guerin treatment failure: a prospective study. Asian Pac J Cancer Prev 2024;25(9):3173–7. DOI: 10.31557/APJCP.2024.25.9.3173
5. Berg T., Nøttrup T.J., Roed H. Gemcitabine for recurrent ovarian cancer – a systematic review and meta-analysis. Gynecol Oncol 2019;155(3):530–7. DOI: 10.1016/j.ygyno.2019.09.026
6. Valle J., Wasan H., Palmer D.H. et al.; ABC-02 Trial Investigators. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med 2010;362(14):1273–81. DOI: 10.1056/NEJMoa0908721
7. de Sousa Cavalcante L., Monteiro G. Gemcitabine: metabolism and molecular mechanisms of action, sensitivity and chemoresistance in pancreatic cancer. Eur J Pharmacol 2014;741:8–16. DOI: 10.1016/j.ejphar.2014.07.041
8. Khan M.F., Gottesman S., Boyella R., Juneman E. Gemcitabine-induced cardiomyopathy: a case report and review of the literature. J Med Case Rep 2014;8:220. DOI: 10.1186/1752-1947-8-220
9. Sabat C., Ginestet C., Chassagnon G. Gemcitabine and nabpaclitaxel induced interstitial pneumonia. Diagn Interv Imaging 2021;102(12):763–4. DOI: 10.1016/j.diii.2021.09.005
10. Liang C., Shi S., Meng Q. et al. Complex roles of the stroma in the intrinsic resistance to gemcitabine in pancreatic cancer: where we are and where we are going. Exp Mol Med 2017;49(12):e406. DOI: 10.1038/emm.2017.255
11. Björn N., Jakobsen I., Udagawa C. et al. The association of four genetic variants with myelosuppression in gemcitabine-treated Japanese is not evident in gemcitabine/carboplatin-treated Swedes. Basic Clin Pharmacol Toxicol 2022;130(4):513–21. DOI: 10.1111/bcpt.13712
12. Shi Y., van der Meel R., Chen X., Lammers T. The EPR effect and beyond: strategies to improve tumor targeting and cancer nanomedicine treatment efficacy. Theranostics 2020;10(17):7921–4. DOI: 10.7150/thno.49577
13. Shah S., Dhawan V., Holm R. et al. Liposomes: advancements and innovation in the manufacturing process. Adv Drug Deliv Rev 2020;154-155:102–22. DOI: 10.1016/j.addr.2020.07.002
14. Oborotov G.A., Dmitrieva M.V., Kolpaksidi A.P. et al. Prospects for the creation of a liposomal gemcitabine delivery system. Rossijskij bioterapevticeskij zurnal = Russian Journal of Biotherapy 2025;24(1):46–56. (In Russ.) DOI: 10.17650/1726-9784-2025-24-1-46-56
15. Higuchi T., Yokobori T., Takahashi R. et al. FF-10832 enables long survival via effective gemcitabine accumulation in a lethal murine peritoneal dissemination model. Cancer Sci 2019;110(9):2933–40. DOI: 10.1111/cas.14123
16. Matsumoto T., Komori T., Yoshino Y. et al. Liposomal gemcitabine, FF-10832, improves plasma stability, tumor targeting, and antitumor efficacy of gemcitabine in pancreatic cancer xenograft models. Pharm Res 2021;38(6):1093–106. DOI: 10.1007/s11095-021-03045-5
Review
For citations:
Oborotov G.A., Rudakova A.A., Baryshnikova M.A., Dmitrieva M.V., Krasnyuk I.I. Evaluation of the cytotoxic potential of liposomal gemcitabine. Russian Journal of Biotherapy. 2025;24(2):83-87. (In Russ.) https://doi.org/10.17650/1726-9784-2025-24-2-83-87