Evaluation of neurotoxicity of anthrafuran, a new antitumor drug from the anthracenediones class
https://doi.org/10.17650/1726-9784-2025-24-2-48-55
Abstract
Background. Neurotoxicity is a side effect of anthracycline antibiotics that has been identified during clinical use. while this type of toxicity may not be limiting, it can significantly affect the quality of life for patients. In the Gause Institute of New Antibiotics an antitumor compound called anthrafuran has developed, that is similar in structure to anthracyclines. This compound has shown high activity in experiments using mouse models of transplanted tumors when administered orally. Anthrafuran has the ability to penetrate the blood-brain barrier, so a study of its neurotoxicity was previously conducted at the maximum tolerated dose.
Aim. To experimentally evaluate the neurotoxicity of anthrafuran when it is administered orally at both a therapeutic dose and three times the therapeutic dose.
Materials and methods. Female Albino rats were used in the experiment. The animals were kept under conditions accordance to GOST 33044–2014 “Principles of good laboratory practice”. Anthrafuran substance was administered orally as a 1,2 % solution in 5 % glucose for injection at doses of 20 and 60 mg/kg once. Motor and research activity of the animals was evaluated in an Open Field test setting 4 hours, one day, and one month after administration. To detect cognitive dysfunction, rats were trained in a T-maze with food reward 3–5 days after drug administration.
Results. Administration of the drug at a therapeutic dose of 20 mg/kg did not cause any abnormal behavior in animals in the Open Field or affect the ability to learn in the T-maze. However, at a dose three times higher than the therapeutic dose (60 mg/kg), anthrafuran decreased the research activity of rats in the Open Field 4 and 24 hours after administration and inhibited the ability to acquire learning in T-maze.
Conclusion. The use of anthrafuran in a therapeutic dose did not cause pronounced neurotoxic reactions. In order to further promote the drug, it is necessary to conduct an in-depth study on the effect of the substance and dosage forms on the behavioral responses and cognitive abilities of rats.
About the Authors
V. A. PolozkovaRussian Federation
Vasilisa A. Polozkova.
11 Bol’shaya Pirogovskaya St., 119021 Moscow
M. I. Treshchalin
Russian Federation
Michael I. Treshchalin.
11 Bol’shaya Pirogovskaya St., 119021 Moscow
S. G. Yazeryan
Russian Federation
Sofiya G. Yazeryan.
11 Bol’shaya Pirogovskaya St., 119021 Moscow
A. E. Shchekotikhin
Russian Federation
Andrey E. Shchekotikhin.
11 Bol’shaya Pirogovskaya St., 119021 Moscow; 9 Miusskaya pl., Moscow 125047
E. R. Pereverzeva
Russian Federation
Eleonora R. Pereverzeva.
11 Bol’shaya Pirogovskaya St., 119021 Moscow
References
1. Mattioli R., Ilari A., Colotti B. et al. Doxorubicin and other anthracyclines in cancers: activity, chemoresistance and its overcoming. Mol Aspects Med 2023;93:101205. DOI: 10.1016/j.mam.2023.101205
2. Was H., Borkowska A., Bagues A. et al. Mechanisms of chemotherapy-induced neurotoxicity. Front Pharmacol 2022;13:750507. DOI: 10.3389/fphar.2022.750507
3. Pellacani C., Eleftheriou G. Neurotoxicity of antineoplastic drugs: Mechanisms, susceptibility, and neuroprotective strategies. Adv Med Sci 2020;65(2):265–85. DOI: 10.1016/j.advms.2020.04.001
4. Dias-Carvalho A., Ferreira M., Ferreira R. et al. Four decades of chemotherapy-induced cognitive dysfunction: comprehensive review of clinical, animal and in vitro studies, and insights of key initiating events. Arch Toxicol 2022;96(1):11–78. DOI: 10.1007/s00204-021-03171-4
5. El-Agamy S.E., Abdel-Aziz A.K., Esmat A., Azab S.S. Chemotherapy and cognition: comprehensive review on doxorubicin-induced chemobrain. Cancer Chemother Pharmacol 2019;84(1):1–14. DOI: 10.1007/s00280-019-03827-0
6. Dias-Carvalho A., Ferreira M., Reis-Mendes A. et al. Chemobrain: mitoxantrone-induced oxidative stress, apoptotic and autophagic neuronal death in adult CD-1 mice. Arch Toxicol 2022;96(6):1767–82. DOI: 10.1007/s00204-022-03261-x
7. Shchekotikhin A.E., Luzikov Y.N., Preobrazhenskaya M.N. et al. 3-aminomethyl derivatives of 4,11-dihydroxynaphtho[2,3-f]-indole-5,10-dione for circumvention of anticancer drug resistance. Bioorg Med Chem 2005;13(6):2285–91. DOI: 10.1016/j.bmc.2004.12.044
8. Shchekotikhin A.E., Glazunova V.A., Dezhenkova L.G. et al. Synthesis and evaluation of new antitumor 3-aminomethyl-4,11-dihydroxynaphtho[2,3-f]indole-5,10-diones. Eur J Med Chem 2014;86:797–805. DOI: 10.1016/j.ejmech.2014.09.021
9. Shchekotikhin A.E., Dezhenkova L.G., Tsvetkov V.B. et al. Discovery of antitumor anthra[2,3-b]furan-3-carboxamides: Optimization of synthesis and evaluation of antitumor properties. Eur J Med Chem 2016;112:114–29. DOI: 10.1016/j.ejmech.2016.01.050
10. Treshalina H.M., Romanenko V.I., Kaluzhny D.N. et al. Development and pharmaceutical evaluation of the anticancer Anthrafuran/Cavitron complex, a prototypic parenteral drug formulation. Eur J Pharm Sci 2017;109:631–7. DOI: 10.1016/j.ejps.2017.09.025
11. Treschalin M.I., Treschalin I.D, Golibrodo V.A. et al. Experimental evaluation of toxic properties of LHTA-2034 by the oral route of administration. Rossijskij bioterapevticeskij zurnal = Russian Journal of Biotherapy 2018;17(3):81–8. (In Russ.). DOI: 10.17650/1726-9784-2018-17-3-81-88
12. Golibrodo V.A. Treschalin I.D, Shchekotikhin A.E., Pereverzeva E.R. Neurotoxic properties of new antitumor agent anthrafuran. Rossijskij bioterapevticeskij zurnal = Russian Journal of Biotherapy 2019;18(1):75–9 (In Russ.). DOI: 10.17650/1726-9784-2019-18-1-75-79
13. Guidelines for Preclinical Studies of Drugs. Ed. by A.N. Mironov. Moscow, 2012. (In Russ.).
14. Council of Europe. European Convention for the protection of vertebrate animals used for experimental and other scientific purposes. ETS 1986:123.
15. Freireich E.J., Gehan E.A., Rall D.P. et al. Quantitative comparison of toxicity of anticancer agents in mouse, rat, hamster, dog, monkey and man. Cancer Chemother Rep 1966;50(4):219–44.
16. Moser V.C. Functional assays for neurotoxicity testing. Toxicol Pathol 2011;39(1):36–45. DOI: 10.1177/0192623310385255
17. Harry G.J., McBride S., Witchey S.K. et al. Roadbumps at the Crossroads of Integrating Behavioral and In Vitro Approaches for Neurotoxicity Assessment. Front Toxicol 2022;4:812863. DOI: 10.3389/ftox.2022.812863
18. Deacon R.M.J., Rawlins J.N.P. T-maze alternation in the rodent. Nat Protoc 2006;1(1):7–12. DOI: 10.1038/nprot.2006.2
19. Deacon R.M.J. Appetitive position discrimination in the T-maze. Nat Protoc 2006;1(1):13–5. DOI: 10.1038/nprot.2006.3
20. Zlatanova H.I., Georgieva-Kotetarova M.T., Vilmosh N.B. et al. Evaluation of the Effect of Cariprazine on Memory and Cognition in Experimental Rodent Models. Int J Environ Res Public Health 2022;19(22):14748. DOI: 10.3390/ijerph192214748
21. Hussein A.M., Bezu M., Korz V. Evaluating Working Memory on a T-maze in Male Rats. Bio Protoc 2018;8(14):e2930. DOI: 10.21769/BioProtoc.2930
22. Cardoso C.V., de Barros M.P, Bachi A.L.L. et al. Chemobrain in rats: Behavioral, morphological, oxidative and inflammatory effects of doxorubicin administration. Behav Brain Res 2020;378:112233. DOI: 10.1016/j.bbr.2019.112233
23. Okudan N., Belviranli M., Sezer T. Potential Protective Effect of Coenzyme Q10 on Doxorubicin-Induced Neurotoxicity and Behavioral Disturbances in Rats. Neurochem Res 2022;47(5):1280–9. DOI: 10.1007/s11064-021-03522-8
24. Alves R., de Carvalho J.D.B., Benedito M.A.C. High and low rearing subgroups of rats selected in the open field differ in the activity of K+-stimulated p-nitrophenylphosphatase in the hippocampus. Brain Res 2005;1058(1–2):178–82. DOI: 10.1016/j.brainres.2005.08.005
25. Chiranth М., Rao G.M., Pandey R. et al. Ameliorating effect of whey preparation on Na+-K+-ATPase and oxidative stress in chemotherapy induced rat model for brain toxicity. Biomedicine 2019;39(3):405–9.
26. Khadrawy Y.A., El-Gizawy M.M., Sorour S.M. et al. Effect of curcumin nanoparticles on the cisplatin-induced neurotoxicity in rat. Drug Chem Toxicol 2019;42(2):194–202. DOI: 10.1080/01480545.2018.1504058
27. Liedke P.E.R., Reolon G.K., Kilpp B. et al. Systemic administration of doxorubicin impairs aversively motivated memory in rats. Pharmacol Biochem Behav 2009;94(2):239–43. DOI: 10.1016/j.pbb.2009.09.001
28. Maurer G.S., Clayton Z.S. Anthracycline chemotherapy, vascular dysfunction and cognitive impairment: burgeoning topics and future directions. Future Cardiol 2023;19(11):547–66. DOI: 10.2217/fca-2022-0086
Review
For citations:
Polozkova V.A., Treshchalin M.I., Yazeryan S.G., Shchekotikhin A.E., Pereverzeva E.R. Evaluation of neurotoxicity of anthrafuran, a new antitumor drug from the anthracenediones class. Russian Journal of Biotherapy. 2025;24(2):48-55. (In Russ.) https://doi.org/10.17650/1726-9784-2025-24-2-48-55