Preview

Russian Journal of Biotherapy

Advanced search

Physical-chemical and thermal studies of solid dispersions of desloratadine

https://doi.org/10.17650/1726-9784-2025-24-2-56-65

Abstract

Background. Currently, various approaches can be used to increase the solubility and dissolution rate of poorly water-soluble pharmaceutical substances, such as salt formation, solubilization with co-solvents, particle size reduction, or preparation of solid dispersions. A promising and relevant area in pharmaceutical science is the production of solid dispersions. Polyvinylpyrrolidone and polyethyleneglycols of various molecular weights are most often used as carrier polymers in the production of solid dispersions.

Aim. Analysis of desloratadine solid dispersions by physicochemical and thermal methods in order to substantiate the most optimal composition and technology for obtaining solid dispersions.

Materials and methods. Solid dispersions of desloratadine with polyethyleneglycol-1500, polyethyleneglycol-4000, polyethyleneglycol-6000, polyvinylpyrrolidone-10000 as carriers in the ratios of 1:1, 1:2, 1:5 were used as objects of study. To determine the morphological features of the obtained samples, scanning electron microscopy was used on a JSM-6380LV device (JEOL, Japan). IR spectroscopy was performed on a Vertex-70 device (Bruker Optik GmbH, Germany), in the mid-IR region of 4000–400 cm–1 using the total internal reflection method. In order to study the crystal structure of solid dispersions with polymer carriers, X-ray phase analysis was performed using the powder X-ray diffractometry method on a DRON device. Studies by the differential scanning calorimetry (DSC) method were carried out on a synchronous thermal analysis device model STA 449 F3 (Netzsch, Germany).

Results. IR spectra of desloratadine solid dispersions demonstrated fluctuations in the areas corresponding to the functional groups of the pharmaceutical substance and polymers. The X-ray diffraction pattern of samples of desloratadine solid dispersions with polymers shows a loss of the crystalline structure of the pharmaceutical substance. when conducting differential scanning calorimetry, the lowest value of specific heat of complexation was found for solid dispersions of desloratadine with polyethyleneglycol –1500 and polyethyleneglycol –6000.

Conclusion. The conducted studies showed that the optimal polymer for obtaining solid dispersions is polyethyleneglycol-1500.

About the Authors

Yu. A. Polkovnikova
Voronezh State University
Russian Federation

Yuliya A. Polkovnikova.

1 Universitetskaya pl., Voronezh 394018



D. D. Beginina
Voronezh State University
Russian Federation

Daria D. Beginina.

1 Universitetskaya pl., Voronezh 394018



U. A. Tulskaya
Voronezh State University
Russian Federation

Ulyana A. Tulskaya.

1 Universitetskaya pl., Voronezh 394018



A. S. Lenshin
Voronezh State University
Russian Federation

Alexandr S. Lenshin.

1 Universitetskaya pl., Voronezh 394018



A. A. Golovina
Voronezh State University
Russian Federation

Anastasia A. Golovina.

1 Universitetskaya pl., Voronezh 394018



References

1. Shi Z., Wang C., Sun C.C. Molecular origin of the distinct tabletability of loratadine and desloratadine: role of the bonding area – bonding strength interplay. Pharm Res 2020;37(7):133. DOI: 10.1007/s11095-020-02856-2

2. Wen Y., Tang Y., Li M., Lai Y. Efficiency and safety of desloratadine in combination with compound glycyrrhizin in the treatment of chronic urticaria: a meta-analysis and systematic review of randomised controlled trials. Pharm Biol 2021;59(1):1276–85. DOI: 10.1080/13880209.2021.1973039

3. González-Núñez V., Valero A., Mullol J. Safety evaluation of desloratadine in allergic rhinitis. Expert Opin Drug Saf 2013;12(3):445–53. DOI: 10.1517/14740338.2013.788148

4. DuBuske L.M. Review of desloratadine for the treatment of allergic rhinitis, chronic idiopathic urticaria and allergic inflammatory disorders. Expert Opin Pharmacother 2005;6:2511–23. DOI: 10.1517/14656566.6.14.2511

5. Li F., Xu Q., Zhu Q. et al. Design, synthesis and biological evaluation of novel desloratadine derivatives with anti-inflammatory and H(1) antagonize activities. Bioorg Med Chem Lett 2019;29(24):126712. DOI: 10.1016/j.bmcl.2019.126712

6. Bernstein J.A., Bernstein J.S., Makol R., Ward S. Allergic rhinitis: a review. JAMA 2024;331(10):866–77. DOI: 10.1001/jama.2024.0530

7. The State Pharmacopoeia of the Russian Federation XV. URL: https://pharmacopoeia.regmed.ru/pharmacopoeia/izdanie-15/ (In Russ.).

8. Berginc K., Sibinovska N., Žakelj S. et al. Biopharmaceutical classification of desloratadine – not all drugs are classified the easy way. Acta Pharm 2020;70(2):131–44. DOI: 10.2478/acph-2020-0006

9. Ali S.M., Upadhyay S.K., Maheshwari A. NMR spectroscopic study of the inclusion complex of desloratadine with β-cyclodextrin in solution. J Incl Phenom Macrocycl Chem 2007;59:351–5. DOI: 10.1007/s10847-007-9335-y

10. Barea S.A., Mattos C.B., Cruz A.C. et al. Solid dispersions enhance solubility, dissolution, and permeability of thalidomide. Drug Dev Ind Pharm 2017;43(3):511–8. DOI: 10.1080/03639045.2016.1268152

11. Liu X., Zhang Z., Jiang Y. et al. Novel PEG-grafted nanostructured lipid carrier for systematic delivery of a poorly soluble antileukemia agent Tamibarotene: characterization and evaluation. Drug Deliv 2015;22(2):223–9. DOI: 10.3109/10717544.2014.885614

12. Huang B.B., Liu D.X., Liu D.K., Wu G. Application of solid dispersion technique to improve solubility and sustain release of emamectin benzoate. Molecules 2019;24(23):4315. DOI: 10.3390/molecules24234315

13. Polkovnikova Yu.A., Glizhova T.N., Arutyunova N.V., Sokulskaya N.N. PEG-4000 increases solubility and dissolution rate of vinpocetin in solid dispersion system. Chimica Techno Acta 2022;9(S):202292S11. DOI: 10.15826/chimtech.2022.9.2.S11

14. Ben Osman Y., Liavitskaya T., Vyazovkin S. Polyvinylpyrrolidone affects thermal stability of drugs in solid dispersions. Int J Pharm 2018;551(1-2):111–20. DOI: 10.1016/j.ijpharm.2018.09.020

15. Andrews G.P., AbuDiak O.A., Jones D.S. Physicochemical characterization of hot melt extruded bicalutamide-polyvinylpyrrolidone solid dispersions. J Pharm Sci 2010;99(3):1322–35. DOI: 10.1002/jps.21914

16. Le Khanh H.P., Haimhoffer Á., Nemes D. et al. Effect of molecular weight on the dissolution profiles of peg solid dispersions containing ketoprofen. Polymers 2023;15(7):1758. DOI: 10.3390/polym15071758

17. Bolourchian N., Mahboobian M.M., Dadashzadeh S. The effect of PEG molecular weights on dissolution behavior of simvastatin in solid dispersions. Iran J Pharm Res 2013;12: 11–20. PMID: 24250667

18. Krasnyuk (Jr) I.I., Beliatskaya A.V., Krasnyuk I.I. et al. Effect of polymers on the physical and chemical properties of benzonal in solid dispersions. Vestnik Moskovskogo universiteta = Bulletin of the Moscow University. Series 2: Chemistry 2021;62(1):44–8. (In Russ.).

19. Jelić D. Thermal stability of amorphous solid dispersions. Molecules 2021;26(1):238. DOI: 10.3390/molecules26010238

20. Tran T.T.D, Tran P.H.L. Molecular interactions in solid dispersions of poorly water-soluble drugs. Pharmaceutics 2020;12(8):745. DOI: 10.3390/pharmaceutics12080745

21. Park C., Meghani N., Loebenberg R. et al. Fatty acid chain length impacts nanonizing capacity of albumin-fatty acid nanomicelles: Enhanced physicochemical property and cellular delivery of poorly water-soluble drug. Eur J Pharm Biopharm 2020;152:257–69. DOI: 10.1016/j.ejpb.2020.05.011

22. Tran T.T.D., Tran P.H.-L., Lim J. et al. Physicochemical principles of controlled release solid dispersion containing a poorly water-soluble drug. Ther Deliv 2010;1:51–62. DOI: 10.4155/tde.10.3

23. Sarabu S., Kallakunta V.R., Bandari S. et al. Hypromellose acetate succinate based amorphous solid dispersions via hot melt extrusion: effect of drug physicochemical properties. Carbohydr Polym 2020;233:115828. DOI: 10.1016/j.carbpol.2020.115828

24. Polkovnikova Yu.A., Kоryanova K.N., Vasilevskaya E.S. The effect of solid dispersions with PEG-1500 on the release of vinpocetine. Biofarmatsevticheskiy zhurnal = Biopharmaceutical Journal 2019;11(5):69–76. (In Russ.).

25. Polkovnikova Yu.A., Severinova N.A., Koryanova K.N. et al. Morphological, technological and biopharmaceutical studies of alginate-chitosan microcapsules with vinpocetine. Pharmacy & Pharmacology 2019;7(5):279–90. DOI: 110.19163/2307-9266-2019-7-5-279-290

26. Polkovnikova Yu.A., Chistyakova V.M. Physicochemical and biopharmaceutical studies of solid dispersions of cinnarizine. Pharmaceutical Chemistry Journal 2023;57(3):424–9. DOI: 10.30906/0023-1134-2023-57-3-45-49


Review

For citations:


Polkovnikova Yu.A., Beginina D.D., Tulskaya U.A., Lenshin A.S., Golovina A.A. Physical-chemical and thermal studies of solid dispersions of desloratadine. Russian Journal of Biotherapy. 2025;24(2):56-65. (In Russ.) https://doi.org/10.17650/1726-9784-2025-24-2-56-65

Views: 278


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1726-9784 (Print)
ISSN 1726-9792 (Online)