Preview

Russian Journal of Biotherapy

Advanced search

E-CADHERIN EXPRESSION DOWNREGULATION ELEVATES TUMOROGENIC POTENTIAL OF HUMAN COLON CANCER CELL LINE HCT116 VIA INCREASE IN CANCER STEM CELLS AMOUNT

https://doi.org/10.17650/1726-9784-2016-15-3-06-14

Abstract

Introduction. E-cadherin aberrant expression or complete loss is common for a number of human malignant neoplasms, and can be a launching mechanism of an epithelial-mesenchymal transition. Passing through epithelial-mesenchymal transition could in turn promote to the acquisition of so called cancer stem cell phenotype by the transformed cells. The objective of the present study is to reveal the influence of E-cadherin expression level on the amount of cancer stem cells in human colon cancer cell line HCT116. Materials and methods. We have created cell sublines with E-cadherin up- and downregulation and assessed the percentage of cancer stem cells using tumor formation assay, clonogenic assay; we also evaluated profile of cell pluripotency markers. Results and conclusion. We have shown that the proportion of cancer stem cells in human colon adenocarcinoma cell line HCT116 depends on the E-cadherin expression level. E-cadherin expression downregulation results in elevated expression of pluripotency genes and in the increase of proportion of cancer stem cells via activation of Wnt/ß-signalling pathway. E-cadherin upregulation has a reverse effect and decreases the amount of HCT116 cancer stem cells. Thus, E-cadherin expression restoration seems prospective in colorectal anticancer therapy.

About the Authors

M. D. Farmakovskaya
ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» Минздрава России
Russian Federation


N. V. Khromova
ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» Минздрава России
Russian Federation


B. P. Kopnin
ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» Минздрава России
Russian Federation


P. B. Kopnin
ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» Минздрава России
Russian Federation


References

1. Stemmler M.P. Cadherins in development and cancer. Molecular Biosystems 2008; 4(8): 835-50. http://dx.doi.org/10.1039/b719215k. PMID: 18633485.

2. van Roy F., Berx G. The cell-cell adhesion molecule E-cadherin. Cellular and Molecular Life Science 2008; 65(23): 3756-88. http://dx.doi.org/10.1007/s00018-008-8281-1. PMID: 18726070.

3. Rodriguez F.J., Lewis-Tuffin L.J., Anastasiadis P.Z. E-cadherin’s dark side possible role in tumor progression. Biochimica and Biophysica Acta 2012;1826(1):23-31. http://dx.doi.org/10.1016/j.bbcan. 2012.03.002. PMID: 22440943.

4. Perl A.K., Wilgenbus P., Dahl U. et al. A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature 2009; 392(6672): 190-3. PMID: 9515965.

5. Kim S.A., Inamura K., Yamauchi M. et al. Loss of CDH1 (E-cadherin) expression is associated with infiltrative tumor growth and lymph nodemetastasis. British Journal of Cancer 2016; 114(2): 199-206. http://dx.doi.org/10.1038/bjc.2015.347. PMID: 26742007.

6. Spaderna S., Schmalhofer O., Hlubek F. et al. Epithelial-mesenchymal and mesenchymal-epithelial transitions during cancer progression. Verhandlungen der Deutschen Gesellschaft fur Pathologie 2007; 91: 21-8. PMID: 18314592.

7. Фармаковская М.Д., Хромова Н.В., Рыбко В.А., Копнин П.Б. Роль эпителиально-мезенхимального перехода в регуляции свойств раковых стволовых клеток солидных опухолей. Российский биотерапевтический журнал 2015; 4: 3-8.

8. Mani S.A., Guo W., Liao M.J. et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133(4): 704-15. http://dx.doi.org/10.1016/j. cell. 2008.03.027. PMID: 18485877.

9. Polyak K., Weinberg R.A. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nature Reviews Cancer 2009; 9(4): 265-73. http://dx.doi.org/10.1038/nrc2620. PMID: 19262571.

10. Reya T., Morrison S.J., Clarke M.F., Weissman I.L. Stem cells, cancer, and cancer stem cells. Nature 2001; 414(6859): 105-11. http://dx.doi.org/10.1038/35102167. PMID: 11689955.

11. Scheel C., Weinberg R.A. Cancer stem cells and epithelial-mesenchy-mal transition: concepts and molecular links. Seminars in Cancer Biology 2012; 22(5-6): 396-403. http://dx.doi.org/10.1016/j.semcancer. 2012.04.001. PMID: 22554795.

12. Kozovska Z., Gabrisova V., Kucerova L. Colon cancer: cancer stem cells markers, drug resistance and treatment. Biomedicine and Pharmacotherapy 2014; 68(8): 911-6. http://dx.doi.org/10.1016/j.biopha.2014.10.019. PMID: 25458789.

13. Singh A., Settleman J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 2010; 29(34): 4741-51. http://dx.doi.org/10.1038/onc.2010.215. PMID: 20531305.

14. Gupta P.B., Fillmore C.M., Jiang G. et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 2011; 146(4): 633-44. http://dx.doi.org/10.1016/j.cell.2011.07.026. PMID: 21854987.

15. Chaffer C.L., Brueckmann I., Scheel C. et al. Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proceedings of the National Academy of Sciences of the United States of America 2011; 108(19): 7950-5. http://dx.doi.org/10.1073/pnas.1102454108. PMID: 21498687.

16. Cordenonsi M., Zanconato F., Azzolin L. et al. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell 2011; 147(4): 759-72. http://dx.doi.org/10.1016/j.cell.2011.09.048. PMID: 22078877.

17. Cai C., Zhu X. The Wnt/b-catenin pathway regulates self-renewal of cancer stem-like cells in human gastric cancer. Molecular Medicine Reports 2012; 5(5): 1191-6. PMID: 22367735.

18. Liu S., Dontu G., Mantle I.D. et al. Hedgehog signaling and Bmi-1 regulate selfrenewal of normal and malignant human mammary stem cells. Cancer Research 2006; 66(12): 6063-71. http://dx.doi.org/10.1158/ 0008-5472.CAN-06-0054. PMID: 16778178.

19. Korkaya H., Paulson A., Charafe-Jauffret E. et al. Regulation of mammary stem/ progenitor cells by PTEN/Akt/beta-catenin signaling. PLoS Biology 2009; 7(6): e1000121. http://dx.doi.org/10.1371/journal.pbio.1000121. PMID: 19492080.

20. Farmakovskaya M., Khromova N., Rybko V. et al. E-cadherin repression increases amount of cancer stem cells in human A549 lung adenocarcinoma and stimulates tumor growth. Cell Cycle 2016; 15(8): 1084-92. http://dx.doi.org/10.1 080/15384101.2016.1156268. PMID: 26940223.

21. Bae K.M., Su Z., Frye C. et al. Expression of pluripotent stem cell reprogramming factors by prostate tumor initiating cells. Journal of Urology 2010; 183(5): 2045-53. http://dx.doi.org/10.1016/j.juro.2009.12.092. PMID: 20303530.

22. Khromova N., Kopnin P., Rybko V., Kopnin B.P. Downregulation of VEGF-C expression in lung and colon cancer cells decelerates tumor growth and inhibits metastasis via multiple mechanisms. Oncogene 2012; 31(11): 1389-97. http://dx.doi.org/10.1038/onc.2011.330. PMID: 21804602.

23. Chitaev N.A., Troyanovsky S.M. Adhesive but not lateral E-cadherin complexes require calcium and catenins for their formation. The Journal of Cell Biology 1998; 142(3): 837-46. PMID: 9700170.

24. Logunov D.Y., Ilyinskaya G.V., Cherenova L.V. et al. Restoration of p53 tumor-suppressor activity in human tumor cells in vitro and in their xenografts in vivo by recombinant avian adenovirus CELO-p53. Gene Therapy 2004; 11: 79-84. PMID: 14681700.

25. Steinestel K., Eder S., Schrader A.J., Steinestel J. Clinical significance of epithelial-mesenchymal transition. Clinical and Translational Medicine 2014; 3: 17. http://dx.doi.org/10.1186/2001-1326-3-17. PMID: 25050175.

26. Kevans D., Wang L.M., Sheahan K. et al. Epithelial-mesenchymal transition (EMT) protein expression in a cohort of stage II colorectal cancer patients with characterized tumor budding and mismatch repair protein status. International Journal of Surgical Pathology 2011; 19(6): 751-60. http://dx.doi.org/10.1177/1066896911414566. PMID: 21791486.

27. Oshima N., Yamada Y., Nagayama S. et al. Induction of cancer stem cell properties in colon cancer cells by defined factors. PLoS One 2014; 9(7): e101735. http://dx.doi.org/10.1371/journal.pone.0101735. PMID: 25006808.

28. Zhang X., Hua R., Wang X. et al. Identification of stem-like cells and clinical significance of candidate stem cell markers in gastric cancer. Oncotarget 2016; 7(9): 9815-31. http://dx.doi.org/10.18632/oncotarget.6890. PMID: 26769843.

29. Talebi A., Kianersi K., Beiraghdar M. Comparison of gene expression of SOX2 and OCT4 in normal tissue, polyps, and colon adenocarcinoma using immunohistochemical staining. Advanced Biomedical Research 2015; 4: 234. http://dx.doi.org/10.4103/2277-9175.167958. PMID: 26645019.

30. Habu N., Imanishi Y., Kameyama K. et al. Expression of Oct3/4 and Nanog in the head and neck squamous carcinoma cells and its clinical implications for delayed neck metastasis in stage I/II oral tongue squamous cell carcinoma. BMC Cancer 2015; 15: 730. http://dx.doi.org/10.1186/s12885-015-1732-9. PMID: 26483189.

31. Alisi A., Cho W.C., Locatelli F., Fruci D. Multidrug resistance and cancer stem cells in neuroblastoma and hepatoblastoma. International Journal of Molecular Science 2013; 14(12): 24706-25; http://dx.doi.org/10.1186/s12885-015-1732-9. PMID: 26483189.

32. Singh S.K., Clarke I.D., Terasaki M. et al. Identification of a cancer stem cell in human brain tumours. Cancer Research 2003; 63(18): 5821-8; PMID: 14522905.


Review

For citations:


Farmakovskaya M.D., Khromova N.V., Kopnin B.P., Kopnin P.B. E-CADHERIN EXPRESSION DOWNREGULATION ELEVATES TUMOROGENIC POTENTIAL OF HUMAN COLON CANCER CELL LINE HCT116 VIA INCREASE IN CANCER STEM CELLS AMOUNT. Russian Journal of Biotherapy. 2016;15(3):6-14. (In Russ.) https://doi.org/10.17650/1726-9784-2016-15-3-06-14

Views: 472


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1726-9784 (Print)
ISSN 1726-9792 (Online)