Preview

Russian Journal of Biotherapy

Advanced search

The influence of aranoza drug formulations and «empty» liposomes on the expression of PD-L1 и PD-L2 in human melanoma cell lines

https://doi.org/10.17650/1726-9784-2017-16-2-74-81

Abstract

Introduction. In recent years, significant progress has been achieved in immunotherapy of tumors, however, little is known about the crosstalk between the tumor and the immune system. It seems reasonable to rise the question of patients treatment with PD-1 and its ligands blockers after chemotherapy. Objective. To investigate the expression of cell surface molecules PD-L1 and PD-L2 both at the mRNA and protein levels in human melanoma cell lines after exposure to «Aranoza, lyophilisate for preparation of solution for injections» (aranoza-lio), liposomal formulation of aranoza and «empty» liposomes without aranoza. Materials and methods. In this study we used 11 melanoma cell lines, 5 of which carried the BRAF mutation. In quantitative polymerase chain reaction in real time we investigated the level of PD-L1 and PD-L2 gene expression. Using flow cytometry we evaluated the expression of cell surface antigens PD-L1 and PD-L2. Results. PD-L1 and PD-L2 mRNA are expressed at a lower level in cells with BRAF mutations, differences were significant only for PD-L2 (p = 0.1373 andp = 0.0207respectively). A high basal level of protein PD-L1 and PD-L2 expression was observed in wild type BRAF melanoma cells. After exposure to liposomal aranoza the level of PD-L1 and PDL-2 mRNA expression was significantly reduced (p = 0.0004 and p = 0.0442 respectively) in compare to control non-treated cells. It is of interest, aranoza-lio and «empty» liposomes increased the expression of PD-L1 (p <0.0001 and p = 0.0005 respectively) and PDL2 (p = 0.0005 and p = 0.0025). Of note, we observed an opposite effect in some melanoma cell lines. Moreover, changes in the expression of proteins PD-L1 and PD-L2 did not correlate with the mRNA level. The expression of PD-L1 protein after incubation with the liposomal aranoza increased dramatically compared to non-treated cells (p = 0.0269). Aranoza-lio and «empty» liposomes decreased the expression of PD-L1 protein (p = 0.0663 and p = 0.7213 respectively). The protein level of PD-L2 after exposure to liposomal aranoza did not change significantly (p = 0.1141), however, aranoza-lio and «empty» liposomes reduced the expression of PD-L2 (p = 0.0021 andp = 0.008). Conclusion. These findings are consistent with those of other researchers and confirm that the level of PD-L1 and PD-L2 mRNA and protein are modulated after treatment. Also, various drug formulations of Aranoza, as well as the «empty» liposomes, have different effects on the expression of PD-L1 and PD-L2 mRNA and proteins.

About the Authors

A. V. Ponomarev
N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia
Russian Federation


V. A. Misyurin
N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia
Russian Federation


A. A. Rudakova
N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia
Russian Federation


A. V. Misyurin
N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia
Russian Federation


M. A. Baryshnikova
N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia
Russian Federation


References

1. Franklin C., Livingstone E., Roesch A. et al. Immunotherapy in melanoma: recent advances and future directions. Eur J Surg Oncol 2017;43(3):604-11. DOI: 10.1016/j.ejso.2016.07.145. PMID: 27769635.

2. Ключагина Ю.И., Соколова З.А., Барышникова М.А. Роль рецептора PD1 и его лигандов PDL1 и PDL2 в иммунотерапии опухолей. Онкопедиатрия 2017;4(1):49-55. DOI: 10.15690/onco.v4i1.1684.

3. Guan X., Wang H., Ma F. et al. The efficacy and safety of programmed cell death 1 and programmed cell death 1 ligand inhibitors for advanced melanoma: a meta-analysis of clinical trials following the PRISMA guidelines. Medicine (Baltimore) 2016;95(11):e3134. DOI: 10.1097/MD.0000000000003134. PMID: 26986169.

4. Patel S.P., Kurzrock R. PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther 2015;14(4):847-56. DOI: 10.1158/1535-7163.MCT-14-0983. PMID: 25695955.

5. Pauken K.E., Wherry E.J. Overcoming T-cell exhaustion in infection and cancer. Trends Immunol 2015;36(4):265-76. DOI: 10.1016/j.it.2015.02.008.

6. Topalian S.L., Drake C.G., Pardoll D.M. Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Op Immunol 2012;24(2):207-12. DOI: 10.1016/j.coi.2011.12.009. PMID: 22236695.

7. Loke P., Allison J.P. PD-L1 and PD-L2 are differentially regulated by Th1 and Th2 cells. Proc Natl Acad Sci USA 2003;100(9):5336-41. DOI: 10.1073/ pnas.0931259100. PMID: 12697896.

8. Tseng S.Y., Otsuji M., Gorski K. et al. B7-DC, a new dendritic cell molecule with potent costimulatory properties for T-cells. J Exp Med 2001;193(7):839-46. DOI: 10.1084/jem.193.7.839. PMID: 11283156.

9. Dong H., Zhu G., Tamada K., Chen L. B7-H1, a 3rd member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 1999;5(12):1365-9. DOI: 10.1038/70932. PMID: 10581077.

10. Dong H., Strome S.E., Salomao D.R. et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 2002;8(8):793-800. DOI: 10.1038/nm730. PMID: 12091876.

11. Nakazawa A., Dotan I., Brimnes J. et al. The expression and function of costimulatory molecules B7H and B7-H1 on colo nic epithelial cells. Gastroenterology 2004;126(5):1347-57. DOI: http://dx.doi.org/10.1053/j.gas-tro.2004.02.004. PMID: 15131796.

12. Youngnak-Piboonratanakit P., Tsushima F., Otsuki N. et al. The expression of B7-H1 on keratinocytes in chronic inflammatory mucocutaneous disease and its regulatory role. Immunol Lett 2004;94(3):215-22. DOI: 10.1016/j.imlet.2004.05.007. PMID: 15275969.

13. Rodig N., Ryan T., Allen J.A. et al. Endothelial expression of PD-L1 and PD-L2 down-regulates CD8+ T-cell activation and cytolysis. Eur J Immunol 2003;33(11):3117-26. DOI: 10.1002/eji.200324270. PMID: 14579280.

14. Mazanet M.M., Hughes C.C. B7-H1 is expressed by human endothelial cells and suppresses T-cell cytokine synthesis. J Immunol 2002;169(7):3581-8. DOI: https://doi.org/10.4049/jimmu-nol.169.7.3581. PMID: 12244148.

15. Chen Y., Zhang J., Li J. et al. Expression of B7-H1 in inflammatory renal tubular epithelial cells. Nephron Exp Nephrol 2006;102(3-4):e81-92. DOI: 10.1159/000089686. PMID: 16282703.

16. Ritprajak P., Azuma M. Intrinsic and extrinsic control of expression of the immunoregulatory molecule PD-L1 in epithelial cells and squamous cell carcinoma. Oral Oncol 2015;51(3):221-8. DOI: 10.1016/j.oraloncology.2014.11.014. PMID: 25500094.

17. Jiang X., Zhou J., Giobbie-Hurder A. et al. The activation of MAPK in melanoma cells resistant to BRAF inhibition promotes PD-L1 expression that is reversible by MEK and PI3K inhibition. Clin Cancer Res 2013;19(3):598-609. DOI: 10.1158/1078-0432.CCR-12-2731. PMID: 23095323.

18. Atefi M., Avramis E., Lassen A. et al. Effects of MAPK and PI3K pathways on PD-L1 expression in melanoma. Clin Cancer Res 2014;20(13):3446-57. DOI: 10.1158/1078-0432.CCR-13-2797. PMID: 24812408.

19. Практические рекомендации по лекарственному лечению злокачественных опухолей (RUSSCO). Под ред. В.М. Моисеенко. М.: Российское общество клинической онкологии, 2016. 524 с.

20. Gotwals P., Cameron S., Cipolletta D. et al. Prospects for combining targeted and conventional cancer therapy with immunotherapy. Nat Rev Cancer 2017;17(5):2866-301. DOI: 10.1038/nrc.2017.17. PMID:28338065.

21. Simeone E., Grimaldi A.M., Festino L. et al. Combination treatment of patients with BRAF-mutant melanoma: a new standard of care. BioDrugs 2017;31(1):51-61. DOI: 10.1007/s40259-016-0208-z. PMID: 28058658.

22. Ascierto P.A., Agarwala S., Botti G. et al. Future perspectives in melanoma research: meeting report from the «melanoma bridge». Napoli, December 1st-4th 2015. J Transl Med 2016;14(1):313. DOI: 10.1186/s12967-016-1070-y. PMID: 27846884.

23. Harris S.J., Brown J., Lopez J. et al. Immuno-oncology combinations: raising the tail of the survival curve. Cancer Biol Med 2016;13(2):171-93. DOI: 10.20892/j.issn.2095-3941.2016.0015. PMID: 27458526.

24. Козеев Г.С. Разработка липосомальной лекарственной формы противоопухолевого препарата араноза. Автореф.. дисс. канд. фарм. наук. М., 2013. 25 c.

25. Козеев С.Г., Барышникова М.А., Полозкова С.А., Оборотова НА. Разработка наноструктурированной липосомальной формы аранозы. Российский биотерапевтический журнал 2012;11(2):24.

26. Козеев С.Г., Барышникова М.А., Афанасьева Д.А. и др. Сравнение цитотоксического действия двух лекарственных форм аранозы. Российский биотерапевтический журнал 2012;11(2):24.

27. Грищенко Н.В., Альбассит Б., Барышникова М.А. и др. Сравнение цитотоксического действия лекарственных форм противоопухолевых препаратов из класса нитрозомочевины апоптоза. Российский биотерапевтический журнал 2014;13(1):41-53.

28. Афанасьева Д.А., Мисюрин В.А., Пономарев А.В. и др. Изменение уровня экспрессии гена CD95/FAS в клетках линий меланомы под воздействием липосомальной аранозы. Российский биотерапевтический журнал 2016;15(3):34-9. DOI: 10.17650/1726-9784-2016-15-3-34-39.

29. Афанасьева Д.А., Барышникова М.А., Хоченкова Ю.А. и др. Липосомальная араноза не индуцирует аутофагию. Российский биотерапевтический журнал 2015;14(1):15-8.

30. Михайлова И.Н., Лукашина М.И., Барышников А.Ю. и др. Клеточные линии меланомы - основа для создания противоопухолевых вакцин. Вестник РАМН 2005;7:37-40.

31. Михайлова И.Н., Ковалевский Д.А., Бурова О.С. и др. Экспрессия раково-тестикулярных антигенов в клетках меланомы человека. Сибирский онкологический журнал 2010;37(1):29-39.

32. Рябая О.О., Цыганова И.В., Сидорова Т.И. и др. Влияние активирующих мутаций V600 гена BRAF на способность клеток меланомы к аутофагии. Саркомы костей, мягких тканей и опухоли кожи 2013;3:68-72.

33. Chomczynski P., Sacchi N. The singlestep method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty something years on. Nat Protoc 2006;1(2):581-5. PMID: 17406285.

34. Moore F.R., Rempfer C.B., Press R.D. Quantitative BCR-ABL1 RQ-PCR fusion transcript monitoring in chronic myelogenous leukemia. Press Methods Mol Biol 2013;999:1-23. DOI: 10.1007/978-1-62703-357-2 1. PMID:23666687.

35. Lienlaf M., Perez-Villarroel P., Knox T. et al. Essential role of HDAC6 in the regulation of PD-L1 in melanoma. Mol Oncol 2016;10(5):735-50. DOI: 10.1016/j.molonc.2015.12.012. PMID: 26775640.

36. Chen M.F., Chen P.T., Chen W.C. et al. The role of PD-L1 in the radiation response and prognosis for esophageal squamous cell carcinoma related to IL-6 and T-cell immunosuppression. Oncotarget 2016;7(7):7913-24. DOI: 10.18632/oncotarget.6861. PMID: 26761210.

37. Schats KA., Van Vré EA, De Schepper S. et al. Validated programmed cell death ligand 1 immunohistochemistry assays (E1L3N and SP142) reveal similar immune cell staining patterns in melanoma when using the same sensitive detection system. Histopathology 2017;70(2):253-63. DOI: 10.1111/his.13056. PMID: 27496355.


Review

For citations:


Ponomarev A.V., Misyurin V.A., Rudakova A.A., Misyurin A.V., Baryshnikova M.A. The influence of aranoza drug formulations and «empty» liposomes on the expression of PD-L1 и PD-L2 in human melanoma cell lines. Russian Journal of Biotherapy. 2017;16(2):74-81. (In Russ.) https://doi.org/10.17650/1726-9784-2017-16-2-74-81

Views: 795


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1726-9784 (Print)
ISSN 1726-9792 (Online)