Preview

Российский биотерапевтический журнал

Расширенный поиск

Идентификация представителей белкового семейства HNRNP и других белков, обеспечивающих сплайсинг, в культивируемых клетках человека

https://doi.org/10.17650/1726-9784-2017-16-2-82-90

Полный текст:

Аннотация

Введение. Гетерогенный ядерный рибонуклеопротеин А1 (heterogeneous nuclear ribonucleoprotein A1, hnRNP А1) и другие РНК-связывающие белки, участвующие в сплайсинге, играют значительную роль в реализации наследственной информации, и их представленность в клетках может сильно меняться при различных заболеваниях, в частности при злокачественных опухолях. Цель исследования - протеомное изучение hnRNP А1 и других РНК-связывающих белков, участвующих в процессах сплайсинга, в 10 культивируемых линиях человеческих злокачественных и нормальных клеток эпителиального и мезенхимального происхождения. Материалы и методы. Для изучения белковых профилей использовался двумерный электрофорез культивируемых клеточных линий аденокарцином (LNCaP, DU-145, PC-3, 769-P), сарком (U2-OS, SK-UT-1B, RD), а также незлокачественных мезенхимальных клеток (SC5-MSC), миобластов и линии доброкачественной гиперплазии предстательной железы (BPH-1) с последующей масс-спектрометрической идентификацией белковых фракций. Результаты. Белок hnRNP А1 определялся как мажорный во всех исследованных линиях злокачественных опухолей человека. В культивируемых мезенхимальных клетках и нормальных миобластах человека hnRNP А1 присутствовал в существенно меньших количествах, чем в опухолевых клетках, и исчезал после индукции дифференцировки миобластов. Выводы. Повышенное содержание белка hnRNP А1 может свидетельствовать об активном процессе пролиферации клеток, в том числе опухолевых. HnRNP А1 и другие белки, участвующие в процессах сплайсинга, представляются перспективными объектами для дальнейшего изучения в трансформированных клетках человека.

Об авторах

Н. В. Пашинцева
ФГУ«Федеральный исследовательский центр «Фундаментальные основы биотехнологии» РАН»
Россия


Л. С. Еремина
ФГУ«Федеральный исследовательский центр «Фундаментальные основы биотехнологии» РАН»
Россия


К. В. Лисицкая
ФГУ«Федеральный исследовательский центр «Фундаментальные основы биотехнологии» РАН»
Россия


А. В. Иванов
ФГУ«Федеральный исследовательский центр «Фундаментальные основы биотехнологии» РАН»
Россия


Л. И. Ковалев
ФГУ«Федеральный исследовательский центр «Фундаментальные основы биотехнологии» РАН»
Россия


М. А. Ковалева
ФГУ«Федеральный исследовательский центр «Фундаментальные основы биотехнологии» РАН»
Россия


С. С. Шишкин
ФГУ«Федеральный исследовательский центр «Фундаментальные основы биотехнологии» РАН»
Россия


Список литературы

1. Kumar A., Williams K.R., Szer W. Purification and domain structure of core hn-RNP proteins A1 and A2 and their relationship to single-stranded DNA-binding proteins. J Biol Chem 1986;261(24):11266-73. PMID: 3733753.

2. Han S.P., Tang Y.H., Smith R. Functional diversity of the hnRNPs: past, present and perspectives. Biochem J 2010;430(3):379-92. DOI: 10.1042/BJ20100396. PMID: 20795951.

3. Ford L.P., Wright W.E., Shay J.W. A model for heterogeneous nuclear ribonucleoproteins in telomere and telomerase regulation. Oncogene 2002;21(4):580-3. DOI: 10.1038/sj.onc.1205086. PMID: 11850782.

4. White R., Gonsior C., Bauer N.M. et al. Heterogeneous nuclear ribonucleoprotein (hnRNP) F is a novel component of oligodendroglial RNA transport granules contributing to regulation of myelin basic protein (MBP) synthesis. J Biol Chem 2012;287(3):1742-54. DOI: 10.1074/jbc.M111.235010. PMID: 22128153.

5. Blech-Hermoni Y., Ladd A.N. RNA binding proteins in the regulation of heart development. Int J Biochem Cell Biol 2013;45(11):2467-78. DOI: 10.1016/j.biocel.2013.08.008. PMID: 23973289.

6. Liu J., Beqaj S., Yang Y., Honoré B. et al. Heterogeneous nuclear ribonucleo-protein-H plays a suppressive role in visceral myogenesis. Mech Dev 2001;104(1-2): 79-87. PMID: 11404082.

7. Chaudhury A., Chander P., Howe P.H. Heterogeneous nuclear ribonucleoproteins (hnRNPs) in cellular processes: focus on hnRNP E1’s multifunctional regulatory roles. RNA 2010;16(8):1449-62. DOI: 10.1261/rna.2254110. PMID: 20584894.

8. Ushigome M., Ubagai T., Fukuda H. et al. Up-regulation of hnRNP A1 gene in sporadic human colorectal cancers. Int J Oncol 2005;26(3):635-40. PMID: 15703818.

9. Zhou Z.J., Dai Z., Zhou S.L. et al. Overexpression of HnRNP A1 promotes tumor invasion through regulating CD44v6 and indicates poor prognosis for hepatocellular carcinoma. Int J Cancer 2013;132(5):1080-9. DOI: 10.1002/ijc.27742. PMID: 22821376.

10. Niforou K.M., Anagnostopoulos A.K., Vbugas K. et al. The proteome profile of the human osteosarcoma U2-OS cell line. Cancer Genomics Proteomics 2008;5(1):63-78. PMID: 18359981.

11. Ko C.C., Chen Y.J., Chen C.T. et al. Chemical proteomics identifies heterogeneous nuclear ribonucleoprotein (hnRNP) A1 as the molecular target of quercetin in its anti-cancer effects in PC-3 cells. J Biol Chem 2014;289(32):22078-89. DOI: 10.1074/jbc.M114.553248. PMID: 24962584.

12. Shishkin S., Kovaleva M., Ivanov A. et al. Comparative proteomic study of proteins in prostate cancer and benign hyperplasia cells. J. Cancer Sci Ther 2011;S1:003. DOI: 10.4172/1948.

13. Kovalyov L.I., Shishkin S.S., Efimochkin A.S. et al. The major protein expression profile and two-dimensional protein database of human heart. Electrophoresis 1995;16(7):1160-9. PMID: 7498159.

14. Lee M., Sadowska A., Bekere I. et al. The structure of human SFPQ reveals a coiledcoil mediated polymer essential for functional aggregation in gene regulation. Nucleic Acids Res 2015;43(7):3826-40. DOI: 10.1093/nar/gkv156. PMID: 25765647.

15. Rajesh C., Baker D.K., Pierce A.J. et al. The splicing-factor related protein SFPQ/ PSF interacts with RAD51D and is necessary for homology-directed repair and sister chromatid cohesion. Nucleic Acids Res 2011;39(1):132-45. DOI: 10.1093/nar/gkq738. PMID: 20813759.

16. Lowery L.A., Rubin J., Sive H. Whitesnake/SFPQ is required for cell survival and neuronal development in the zebrafish. Dev Dyn 2007;236(5):1347-57. PMID: 17393485.

17. Dolnik A., Engelmann J.C., Scharfenberger-Schmeer M. et al. Commonly altered genomic regions in acute myeloid leukemia are enriched for somatic mutations involved in chromatin remodeling and splicing. Blood 2012;120(18):e83-92. DOI: 10.1182/blood-2011-12-401471. PMID: 22976956.

18. Jiang F.N., He H.C., Zhang Y.Q. еt al. An integrative proteomics and interaction network-based classifier for prostate cancer diagnosis. PLoS One 2013;8(5):e63941. DOI: 10.1371/journal.pone.0063941. PMID: 23737958.

19. Pashintseva N.Y., Shishkin S.S., Lisitskaya K.V. et al. Study of splicing factor, proline- and glutamine-rich by proteomic techniques in human malignant and nonmalignant cell lines. Protein Pept Lett 2016;23(11):958-66.

20. Gennarino V.A., Alcott C.E., Chen C.A. et al. NUDT21-spanning CNVs lead to neuropsychiatric disease and altered MeCP2 abundance via alternative polyadenylation. Elife 2015;8:4. DOI: 10.7554/eLife.10782. PMID: 26312503.

21. den Engelsman J., Bennink E.J., Doerwald L. et al. Mimicking phosphorylation of the small heat-shock protein al-phaB-crystallin recruits the F-box protein FBX4 to nuclear SC35 speckles. Eur J Biochem 2004;271(21):4195-203. DOI: 10.1111/j.1432-1033.2004.04359.x. PMID: 15511225.

22. Vos M.J., Kanon B., Kampinga H.H. HSPB7 is a SC35 speckle resident small heat shock protein. Biochim Biophys Acta 2009;1793(8):1343-53. DOI: 10.1016/j.bbamcr.2009.05.005. PMID: 19464326.

23. Ushigome M., Ubagai T., Fukuda H. et al. Up-regulation of hnRNP A1 gene in sporadic human colorectal cancers. Int J Oncol 2005;26(3):635-40. PMID: 15703818.

24. Zhou Z.J., Dai Z., Zhou S.L. et al. Overexpression of hnRNP A1 promotes tumor invasion through regulating CD44v6 and indicates poor prognosis for hepatocellular carcinoma. Int J Cancer 2013;132(5):1080-9. DOI: 10.1002/ijc.27742. PMID: 22821376.

25. Rooke N., Markovtsov V., Cagavi E. et al. Roles for SR proteins and hnRNP A1 in the regulation of c-src exon N1. Mol Cell Biol 2003;23(6):1874-84. PMID: 12612063.

26. Buvoli M., Cobianchi F., Bestagno M.G. et al. Alternative splicing in the human gene for the core protein A1 generates another hnRNP protein. EMBO J 1990;9(4):1229-35. PMID: 1691095.

27. Liu Q., Dreyfuss G. In vivo and in vitro arginine methylation of RNA-binding proteins. Mol Cell Biol 1995;15(5):2800-8. PMID: 7739561.

28. Rajpurohit R., Paik W.K., Kim S. Effect of enzymic methylation of heterogeneous ribonucleoprotein particle A1 on its nucleic-acid binding and controlled proteolysis. J Biochem 1994;304(Pt 3):903-9. PMID: 7818496.

29. Kim S., Merrill B.M., Rajpurohit R. et al. Identification of NG-methylarginine residues in human heterogeneous RNP protein A1: Phe/Gly-Gly-Gly-Arg-Gly-Gly-Gly/Phe is a preferred recognition motif. Biochemistry 1997;36(17):5185-92. DOI: 10.1021/bi9625509.

30. Ong S.E., Mittler G., Mann M. Identifying and quantifying in vivo methylation sites by heavy methyl SILAC. Nat Methods 2004;1(2):119-26.


Для цитирования:


Пашинцева Н.В., Еремина Л.С., Лисицкая К.В., Иванов А.В., Ковалев Л.И., Ковалева М.А., Шишкин С.С. Идентификация представителей белкового семейства HNRNP и других белков, обеспечивающих сплайсинг, в культивируемых клетках человека. Российский биотерапевтический журнал. 2017;16(2):82-90. https://doi.org/10.17650/1726-9784-2017-16-2-82-90

For citation:


Pashintseva N.V., Eremina L.S., Lisitskaya K.V., Ivanov A.V., Kovalev L.I., Kovaleva M.A., Shishkin S.S. Proteomic identification of hnRNP family members and other proteins involved in splicing in human cultured cells. Russian Journal of Biotherapy. 2017;16(2):82-90. (In Russ.) https://doi.org/10.17650/1726-9784-2017-16-2-82-90

Просмотров: 38


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1726-9784 (Print)
ISSN 1726-9792 (Online)