Preview

Российский биотерапевтический журнал

Расширенный поиск

Механизмы резистентности метастатической меланомы кожи к анти-Pd-1 терапии

https://doi.org/10.17650/1726-9784-2018-17-1-34-46

Полный текст:

Аннотация

Появление в клинической практике ингибиторов иммунных контрольных точек стало революцией в лечении метастатической меланомы кожи. Однако блокада PD-1 позволяет добиться объективного ответа лишь у 30–40 % пациентов. К настоящему времени известно множество механизмов первичной резистентности меланомы к иммунотерапии, связанных с особенностями как опухоли, так и опухолевого микроокружения. Как правило, ответ на анти-PD-1 терапию является длительным, но вторичная резистентность формируется у 25 % пациентов, имевших объективный ответ на данный вид лечения. В этом обзоре описаны основные механизмы резистентности метастатической меланомы кожи к анти-PD-1 терапии, а также возможные пути их преодоления.

Об авторах

Я.  А. Жуликов
ФГАОУ ВО Первый МГМУ им. И.М. Сеченова Минздрава России (Сеченовский Университет)
Россия
119991 Москва, ул. Трубецкая, 8, стр. 2


И. В. Самойленко
ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России
Россия

115478 Москва, Каширское шоссе, 24

Игорь Вячеславович Самойленко



Л. В. Демидов
ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России
Россия
115478 Москва, Каширское шоссе, 24


Список литературы

1. Mellman I., Coukos G., Dranoff G. Cancer immunotherapy comes of age. Nature 2011;480(7378):480–9. DOI:10.1038/nature10673. PMID: 22193102.

2. Kaufman H.L., Kirkwood J.M., Hodi F.S. et al. The Society for Immunotherapy of Cancer consensus statement on tumour immunotherapy for the treatment of cutaneous melanoma. Nat Rev Clin Oncol 2013;10(10):588–98. DOI: 10.1038/nrclinonc. 2013.153. PMID: 23982524.

3. Larkin J., Hodi F.S., Wolchok J.D. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 2015;373(13):1270–1. DOI: 10.1056/NEJMc1509660. PMID: 26398076.

4. Weber J.S., D’Angelo S.P., Minor D. et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol 2015;16(4):375–84. DOI: 10.1016/S1470-2045(15)70076-8. PMID: 25795410.

5. Khoja L., Kibiro M., Metser U. et al. Patterns of response to anti-PD-1 treatment: an exploratory comparison of four radiological response criteria and associations with overall survival in metastatic melanoma patients. Br J Cancer 2016;115(10):1186–92. DOI: 10.1038/bjc.2016.308. PMID: 27701388.

6. Ji R.R., Chasalow S.D., Wang L. et al. An immune-active tumor microenvironment favors clinical response to ipilimumab. Cancer Immunol Immunother 2012;61(7):1019–31. DOI:10.1007/s00262-011-1172-6. PMID: 22146893.

7. Topalian S.L., Taube J.M., Anders R.A., Pardoll D.M. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 2016;16(5):275–87. DOI: 10.1038/nrc.2016.36. PMID: 27079802.

8. Fusi A., Festino L., Botti G. et al. PD-L1 expression as a potential predictive biomarker. Lancet Oncol 2015;16(13):1285–7. DOI: 10.1016/S1470-2045(15)00307-1. PMID: 26433815.

9. Walker L.S. EFIS Lecture: Understanding the CTLA-4 checkpoint in the maintenance of immune homeostasis. Immunol Lett 2017;184:43–50. DOI: 10.1016/j.imlet.2017.02.007. PMID: 28216262.

10. Ribas A., Hamid O., Daud A. et al. Association of pembrolizumab with tumor response and survival among patients with advanced melanoma. JAMA 2016;315(15):1600–9. DOI: 10.1001/jama.2016.4059. PMID: 27092830.

11. Stefanová I., Hemmer B., Vergelli M. et al. TCR ligand discrimination is enforced by competing ERK positive and SHP-1 negative feedback pathways. Nat Immunol 2003;4(3):248–54. DOI: 10.1038/ni895. PMID: 12577055.

12. Andrews L.P., Marciscano A.E., Drake C.G., Vignali D.A. LAG3 (CD223) as a cancer immunotherapy target. Immunol Rev 2017;276(1):80–96. DOI: 10.1111/imr.12519. PMID: 28258692.

13. Liao W., Lin J.X., Leonard W.J. Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity 2013;38(1):13–25. DOI: 10.1016/j.immuni.2013.01.004. PMID: 23352221.

14. de la Roche M., Asano Y., Griffiths G.M. Origins of the cytolytic synapse. Nat Rev Immunol 2016;16(7):421–32. DOI: 10.1038/nri.2016.54. PMID: 27265595.

15. Keir M.E., Butte M.J., Freeman G.J., Sharpe A.H. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 2008;26:677–704. DOI: 10.1146/annurev.immunol.26.021607.090331. PMID: 18173375.

16. Oestreich K.J., Yoon H., Ahmed R., Boss J.M. NFATc1 regulates PD-1 expression upon T cell activation. J Immunol 2008;181(7):4832–9. PMID:18802087.

17. Jin H.T., Ahmed R., Okazaki T. Role of PD-1 in regulating T-cell immunity. Curr Top Microbiol Immunol 2011;350:17–37. DOI: 10.1007/82_2010_116. PMID: 21061197.

18. Cho H.Y., Lee S.W., Seo S.K. et al. Interferon-sensitive response element (ISRE) is mainly responsible for IFN-alpha-induced upregulation of programmed death-1 (PD-1) in macrophages. Biochim Biophys Acta 2008;1779(12):811–9. DOI: 10.1016/j.bbagrm.2008.08.003. PMID: 18771758.

19. Boussiotis V.A. Molecular and biochemical aspects of the PD-1 checkpoint pathway. N Engl J Med 2016;375(18):1767–78. DOI: 10.1056/NEJMra1514296. PMID: 27806234.

20. Green M.R., Monti S., Rodig S.J. et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood 2010;116(17):3268–77. DOI: 10.1182/blood-2010-05-282780. PMID: 20628145.

21. Parsa A.T., Waldron J.S., Panner A. et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med 2007;13(1):84–8. DOI: 10.1038/nm1517. PMID: 17159987.

22. Atefi M., Avramis E., Lassen A. et al. Effects of MAPK and PI3K pathways on PD-L1 expression in melanoma. Clin Cancer Res 2014;20(13):3446–57. DOI: 10.1158/1078-0432.CCR-13-2797. PMID: 24812408.

23. Butte M.J., Keir M.E., Phamduy T.B. et al. Programmed death-1 ligand 1 interacts specifically with the B7–1 costimulatory molecule to inhibit T cell responses. Immunity 2007;27(1):111–22. DOI: 10.1016/j.immuni.2007.05.016. PMID: 17629517.

24. Hugo W., Zaretsky J.M., Sun L. et al. Genomic and transcriptomic features of response to Anti-PD-1 therapy in metastatic melanoma. Cell 2016;165(1):35–44. DOI: 10.1016/j.cell.2016.02.065. PMID: 26997480.

25. Dempke W.C.M., Fenchel K., Uciechowski P., Dale S.P. Second- and third-generation drugs for immuno-oncology treatment – the more the better? Eur J Cancer 2017;74:55–72. DOI: 10.1016/j.ejca.2017.01.001. PMID: 28335888.

26. Cancer Genome Atlas Network. Genomic Classification of Cutaneous Melanoma. Cell 2015;161(7):1681–96. DOI: 10.1016/j.cell.2015.05.044. PMID: 26091043.

27. Mandalà M., De Logu F., Merelli B. et al. Immunomodulating property of MAPK inhibitors: from translational knowledge to clinical implementation. Lab Invest 2017;97(2):166–75. DOI: 10.1038/labinvest.2016.132. PMID: 27991907.

28. Frederick D.T., Piris A., Cogdill A.P. et al. BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin Cancer Res 2013;19(5):1225–31. DOI: 10.1158/1078-0432.CCR-12-1630. PMID: 23307859.

29. Wilmott J.S., Long G.V., Howle J.R. et al. Selective BRAF inhibitors induce marked T-cell infiltration into human metastatic melanoma. Clin Cancer Res 2012;18(5):1386–94. DOI: 10.1158/1078-0432.CCR-11-2479. PMID: 22156613.

30. Ebert P.J., Cheung J., Yang Y. et al. MAP kinase inhibition promotes T cell and anti-tumor activity in combination with PD-L1 checkpoint blockade. Immunity 2016;44(3):609–21. DOI: 10.1016/j.immuni.2016.01.024. PMID: 26944201.

31. Ribas A., Hodi F.S., Callahan M. et al. Hepatotoxicity with combination of vemurafenib and ipilimumab. N Engl J Med 2013;368(14):1365–6. DOI: 10.1056/NEJMc1302338. PMID: 23550685.

32. Xue G., Romano E., Massi D., Mandalà M. Wnt/β-catenin signaling in melanoma: Preclinical rationale and novel therapeutic insights. Cancer Treat Rev 2016;49:1–12. DOI: 10.1016/j.ctrv.2016.06.009. PMID: 27395773.

33. Larue L., Delmas V. The WNT/Betacatenin pathway in melanoma. Front Biosci 2006;11:733–42. PMID: 16146765.

34. Spranger S., Bao R., Gajewski T.F. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 2015;523(7559):231–5. DOI: 10.1038/nature14404. PMID: 25970248.

35. Ramos R.N., Piaggio E., Romano E. Mechanisms of resistance to immune checkpoint antibodies. Handb Exp Pharmacol 2017. DOI: 10.1007/164_2017_11. PMID: 28315073.

36. Da Forno P.D., Pringle J.H., Hutchinson P. et al. WNT5A expression increases during melanoma progression and correlates with outcome. Clin Cancer Res 2008;14(18):5825–32. DOI: 10.1158/1078-0432.CCR-07-5104. PMID: 18794093.

37. Holtzhausen A., Zhao F., Evans K.S. et al. Melanoma-derived Wnt5a promotes local dendritic-cell expression of IDO and immunotolerance: opportunities for pharmacologic enhancement of immunotherapy. Cancer Immunol Res 2015;3(9):1082–95. DOI: 10.1158/2326-6066.CIR-14-0167. PMID: 26041736.

38. Vredeveld L.C., Possik P.A., Smit M.A. et al. Abrogation of BRAFV600Einduced senescence by PI3K pathway activation contributes to melanomagenesis. Genes Dev 2012;26(10):1055–69. DOI: 10.1101/gad.187252.112. PMID: 22549727.

39. Peng W., Chen J.Q., Liu C. et al. Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov 2016;6(2):202–16. DOI: 10.1158/2159-8290.CD-15-0283. PMID: 26645196.

40. De Henau O., Rausch M., Winkler D. et al. Overcoming resistance to checkpoint blockade therapy by targeting PI3Kγ in myeloid cells. Nature 2016;539(7629):443–7. DOI: 10.1038/nature20554. PMID: 27828943.

41. Lyons J.M. 3rd, Schwimer J.E., Anthony C.T. et al. The role of VEGF pathways in human physiologic and pathologic angiogenesis. J Surg Res 2010;159(1):517–27. DOI: 10.1016/j.jss. 2008.12.014. PMID: 19577260.

42. Bouzin C., Brouet A., De Vriese J. et al. Effects of vascular endothelial growth factor on the lymphocyte-endothelium interactions: identification of caveolin-1 and nitric oxide as control points of endothelial cell anergy. J Immunol 2007;178(3):1505–11. PMID: 17237399.

43. Shetty S., Weston C.J., Oo Y.H. et al. Common lymphatic endothelial and vascular endothelial receptor-1 mediates the transmigration of regulatory T cells across human hepatic sinusoidal endothelium. J Immunol 2011;186(7):4147–55. DOI: 10.4049/jimmunol.1002961. PMID: 21368224.

44. Klose R., Krzywinska E., Castells M. et al. Targeting VEGF-A in myeloid cells enhances natural killer cell responses to chemotherapy and ameliorates cachexia. Nat Commun 2016;7:12528. DOI: 10.1038/ncomms12528. PMID: 27538380.

45. Parry R.V., Chemnitz J.M., Frauwirth K.A. et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol 2005;25(21):9543–53. DOI: 10.1128/MCB.25.21.9543-9553.2005. PMID: 16227604.

46. Takaya S., Saito H., Ikeguchi M. Upregulation of immune checkpoint molecules, PD-1 and LAG-3, on CD4+ and CD8+ T cells after gastric cancer surgery. Yonago Acta Med 2015;58(1):39–44. PMID: 26190896.

47. Goldberg M.V., Drake C.G. LAG-3 in cancer immunotherapy. Curr Top Microbiol Immunol 2011;344:269–78. DOI: 10.1007/82_2010_114. PMID: 21086108.

48. Kyi C., Postow M.A. Immune checkpoint inhibitor combinations in solid tumors: opportunities and challenges. Immunotherapy 2016;8(7):821–37. DOI: 10.2217/imt-2016-0002. PMID: 27349981.

49. Yu M., Lu B., Liu Y. et al. Tim-3 is upregulated in human colorectal carcinoma and associated with tumor progression. Mol Med Rep 2017;15(2):689–95. DOI: 10.3892/mmr.2016.6065. PMID: 28035413.

50. Koyama S., Akbay E.A., Li Y.Y. et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun 2016;7:10501. DOI: 10.1038/ncomms10501. PMID: 26883990.

51. Bevelacqua V., Bevelacqua Y., Candido S. et al. Nectin like-5 overexpression correlates with the malignant phenotype in cutaneous melanoma. Oncotarget 2012;3(8):882–92. DOI: 10.18632/oncotarget. 594. PMID: 22929570.

52. Inozume T., Yaguchi T., Furuta J. et al. Melanoma cells control antimelanoma CTL responses via interaction between TIGIT and CD155 in the effector phase. J Invest Dermatol 2016;136(1):255–63. DOI: 10.1038/JID.2015.404. PMID: 26763445.

53. Kurtulus S., Sakuishi K., Ngiow S.F. et al. TIGIT predominantly regulates the immune response via regulatory T cells. J Clin Invest 2015;125(11):4053–62. DOI: 10.1172/JCI81187. PMID: 26413872.

54. Melero I., Hirschhorn-Cymerman D., Morales-Kastresana A. et al. Agonist antibodies to TNFR molecules that costimulate T and NK cells. Clin Cancer Res 2013;19(5):1044–53. DOI: 10.1158/1078-0432.CCR-12-2065. PMID: 23460535.

55. Hellmann M.D., Friedman C.F., Wolchok J.D. Combinatorial cancer immunotherapies. Adv Immunol 2016;130:251–77. DOI: 10.1016/bs.ai.2015.12.005. PMID: 26923003.

56. Mahmood T., Yang P.C. OX40L-OX40 interactions: a possible target for gastrointestinal autoimmune diseases. N Am J Med Sci 2012;4(11):533–6. DOI: 10.4103/1947-2714.103311. PMID: 23181223.

57. Gough M.J., Crittenden M.R., Sarff M. et al. Adjuvant therapy with agonistic antibodies to CD134(OX40) increases local control after surgical or radiation therapy of cancer in mice. J Immunother 2010;33(8):798–809. DOI: 10.1097/CJI.0b013e3181ee7095. PMID: 20842057.

58. Ruby C.E., Yates M.A., Hirschhorn-Cymerman D. et al. Cutting edge: OX40 agonists can drive regulatory T cell expansion if the cytokine milieu is right. J Immunol 2009;183(8):4853–7. DOI: 10.4049/jimmunol.0901112. PMID: 19786544.

59. Linch S.N., McNamara M.J., Redmond W.L. OX40 agonists and combination immunotherapy: putting the pedal to the metal. Front Oncol 2015;5:34. DOI: 10.3389/fonc.2015.00034. PMID: 25763356.

60. Ramakrishna V., Sundarapandiyan K., Zhao B. et al. Characterization of the human T cell response to in vitro CD27 costimulation with varlilumab. J Immunother Cancer 2015;3:37. DOI: 10.1186/s40425-015-0080-2. PMID: 26500773.

61. Moon Y.W., Hajjar J., Hwu P., Naing A. Targeting the indoleamine 2,3-dioxygenase pathway in cancer. J Immunother Cancer 2015;3:51. DOI: 10.1186/s40425-015-0094-9. PMID: 26674411.

62. Zhai L., Spranger S., Binder D.C. et al. Molecular pathways: targeting IDO1 and other tryptophan dioxygenases for cancer immunotherapy. Clin Cancer Res 2015;21(24):5427–33. DOI: 10.1158/1078-0432.CCR-15-0420. PMID: 26519060.

63. Metz R., Rust S., Duhadaway J.B. et al. IDO inhibits a tryptophan sufficiency signal that stimulates mTOR: A novel IDO effector pathway targeted by D-1-methyl-tryptophan. Oncoimmunology 2012;1(9):1460–8. DOI: 10.4161/onci.21716. PMID: 23264892.

64. Weinlich G., Murr C., Richardsen L. et al. Decreased serum tryptophan concentration predicts poor prognosis in malignant melanoma patients. Dermatology 2007;214(1):8–14. DOI: 10.1159/000096906. PMID: 17191041.

65. O’Shea J.J., Plenge R. JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity 2012;36(4):542–50. DOI: 10.1016/j.immuni.2012.03.014. PMID: 22520847.

66. Levy D.E., Darnell J.E. Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 2002;3(9):651–62. DOI: 10.1038/nrm909. PMID: 12209125.

67. Zaretsky J.M., Garcia-Diaz A., Shin D.S. et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med 2016;375(9):819–29. DOI: 10.1056/NEJMoa1604958. PMID: 27433843.

68. Sucker A., Zhao F., Real B. et al. Genetic evolution of T-cell resistance in the course of melanoma progression. Clin Cancer Res 2014;20(24):6593–604. DOI: 10.1158/1078-0432.CCR-14-0567. PMID: 25294904.

69. Dovedi S.J., Adlard A.L., LipowskaBhalla G. et al. Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade. Cancer Res 2014;74(19):5458–68. DOI: 10.1158/0008-5472.CAN-14-1258. PMID: 25274032.

70. Wang X., Schoenhals J.E., Li A. et al. Suppression of type I IFN signaling in tumors mediates resistance to anti-PD-1 treatment that can be overcome by radiotherapy. Cancer Res 2017;77(4): 839–50. DOI: 10.1158/0008-5472. CAN-15-3142. PMID: 27821490.

71. Marchini A., Scott E.M., Rommelaere J. Overcoming barriers in oncolytic virotherapy with HDAC inhibitors and immune checkpoint blockade. Viruses 2016;8(1):9. DOI: 10.3390/v8010009. PMID: 26751469.


Для цитирования:


Жуликов Я.А., Самойленко И.В., Демидов Л.В. Механизмы резистентности метастатической меланомы кожи к анти-Pd-1 терапии. Российский биотерапевтический журнал. 2018;17(1):34-46. https://doi.org/10.17650/1726-9784-2018-17-1-34-46

For citation:


Zhulikov Y.A., Samoylenko I.V., Demidov L.V. Mechanisms of resistance to anti-Pd-1 therapy in metastatic cutaneous melanoma. Russian Journal of Biotherapy. 2018;17(1):34-46. (In Russ.) https://doi.org/10.17650/1726-9784-2018-17-1-34-46

Просмотров: 71


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1726-9784 (Print)
ISSN 1726-9792 (Online)