Preview

Relationship between deletion and point mutations of p53 and drug resistance to aranoza in human melanoma cell lines

https://doi.org/10.17650/1726-9784-2018-17-1-64-69

Abstract

Aranosa, nitrozourea derivative is a DNA-methylating agent that has been approved for treatment of patients with disseminated melanoma. Aranoza effect is based on DNA damage and then as a result apoptosis mechanisms start launching. The important role in this process must be played by p53 protein, and its different dysfunctions can result in drug resistance. Objective. The purpose is to study p53 mutational status in cell lines of human skin metastatic melanoma and to estimate its connection with сell lines resistance to aranoza. Materials and methods. The research was conducted on 14 cell lines of human skin metastatic melanoma. Aranoza IC50 for cell lines was determined by MTT-test. The 17р chromosome’s condition was estimated by fluorescence in situ hybridization. The presence of point mutations in DNA-binding domain of human p53 was researched by Sanger sequencing. Results. Skin metastatic melanoma cell lines had different sensitivity to aranoza. Almost all cell lines were heterogeneous in the condition of 17 th chromosome. P53 point mutations were found in 2 cell lines. But one part of resistant cell lines almost didn’t have any mutational disorders of p53, another part of resistant lines on the contrary had plenty of p53 mutational disorders. Conclusion. The correlation of resistance and p53 mutations can be established for one part of human skin metastatic melanoma cell lines. But for another part of human skin metastatic melanoma cell lines resistance most likely are driven by other mechanisms.

About the Authors

A. V. Ponomarev
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation
24 Kashirskoe Shosse, Moscow 115478


A. A. Solodovnik
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation
24 Kashirskoe Shosse, Moscow 115478


A. S. Mkrtchyan
“GenoTechnology” LLC
Russian Federation
104 Profsoyuznaya St., Moscow 117485


Yu. P. Finashutina
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation
24 Kashirskoe Shosse, Moscow 115478


A. A. Turba
“GenoTechnology” LLC
Russian Federation
104 Profsoyuznaya St., Moscow 117485


V. A. Misyurin
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; “GenoTechnology” LLC
Russian Federation

24 Kashirskoe Shosse, Moscow 115478

104 Profsoyuznaya St., Moscow 117485



A. V. Misyurin
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation
24 Kashirskoe Shosse, Moscow 115478


M. A. Baryshnikova
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation
24 Kashirskoe Shosse, Moscow 115478


References

1. Bogdan I., Xin H., Burg G., Bоni R. Heterogeneity of allelic deletions within melanoma metastases. Melanoma Res 2001;11(4):349–54. PMID: 11479423.

2. Копнин Б.П., Копнин П.Б., Хромова Н.В. и др. Многоликий р53: разнообразие форм, функций, опухольсупрессирующих и онкогенных активностей. Клиническая онкогематология 2008;1(1):2–9.

3. Blagosklonny M.V. Loss of function and p53 protein stabilization. Oncogene 1997;15:1889–93. DOI: 10.1038/sj.onc.1201374. PMID: 9365234.

4. Lavin M.F., Gueven N. The complexity of p53 stabilization and activation. Cell Death Differ 2006;13(6):941–50. DOI: 10.1038/sj.cdd.4401925. PMID: 16601750.

5. Roemer K. Mutant p53: gain-of-function oncoproteins and wild-type p53 inactivators. Biol Chem 1999; 380(7–8):879–87. DOI: 10.1515/BC.1999.108. PMID: 10494837.

6. Houben R., Hesbacher S., Schmid C.P. et al. High-level expression of wild-type p53 in melanoma cells is frequently associated with inactivity in p53 reporter gene assays. PLoS One 2011;6(7): e22096. DOI: 10.1371/journal.pone.0022096. PMID: 21760960.

7. Michael D., Oren M. The p53 and Mdm2 families in cancer. Curr Opin Genet Dev 2002;12(7):53–9. PMID: 11790555.

8. Soussi T., Beroud C. Assessing TP53 status in human tumours to evaluate clinical outcome. Nat Rev Cancer 2001;1(3):233–40. DOI: 10.1038/35106009. PMID: 11902578.

9. Gwosdz C., Scheckenbach K., Lieven O. et al. Comprehensive analysis of the p53 status in mucosal and cutaneous melanomas. Int J Cancer 2006;118(3):577–82. DOI: 10.1002/ijc.21366. PMID: 16094622.

10. Sparrow L.E., Soong R., Dawkins H.J. et al. p53 gene mutation and expression in naevi and melanomas. Melanoma Res 1995;5(2):93–100. PMID: 7620345.

11. Soto J.L., Cabrera C.M., Serrano S., López-Nevot M.A. Mutation analysis of genes that control the G1/S cell cycle in melanoma: TP53, CDKN1A, CDKN2A, and CDKN2B. BMC Cancer 2005;5:36 DOI: 10.1186/1471-2407-5-36. PMID: 15819981.

12. Li W., Sanki A., Karim R.Z. et al. The role of cell cycle regulatory proteins in the pathogenesis of melanoma. Pathology 2006;38(4):287–301. DOI: 10.1080/00313020600817951. PMID: 16916716.

13. Avery-Kiejda K.A., Bowden N.A., Croft A.J. et al. P53 in human melanoma fails to regulate target genes associated with apoptosis and the cell cycle and may contribute to proliferation. BMC Cancer 2011;11:203. DOI: 10.1186/1471-2407-11-203. PMID: 21615965.

14. Healy E., Belgaid C.E., Takata M. et al. Allelotypes of primary cutaneous melanoma and benign melanocytic nevi. Cancer Res 1996;56(3):589–93.

15. Boni R., Matt D., Voetmeyer A. et al. Chromosomal allele loss in primary cutaneous melanoma is heterogeneous and correlates with proliferation. J Invest Dermatol 1998;110(3):215–7. DOI: 10.1046/j.1523-1747.1998.00109.x. PMID: 9506438.

16. Soto Martínez J.L., Cabrera Morales C.M., Serrano Ortega S., López-Nevot M.A. Mutation and homozygous deletion analyses of genes that control the G1/S transition of the cell cycle in skin melanoma: p53, p21, p16 and p15. Clin Transl Oncol 2005;7(4):156–64. PMID: 15960923.

17. Shahjahani M., Mohammadiasl J., Noroozi F. et al. Molecular basis of chronic lymphocytic leukemia diagnosis and prognosis. Cell Oncol (Dordr) 2015;38(2):93–109. DOI: 10.1007/s13402-014-0215-3. PMID: 25563586.

18. Михайлова И.Н., Лукашина М.И., Барышников А.Ю. и др. Клеточные линии меланомы – основа для создания противоопухолевых вакцин. Вестник РАМН 2005;7:37–40.

19. Olivier M., Hollstein M., Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol 2010;2(1):a001008. DOI: 10.1101/cshperspect.a001008. PMID:20182602

20. Пономарев А.В., Мисюрин В.А., Рудакова А.А. и др. Изменение экспрессии мРНК MDM2 и NFKB1 в клеточных линиях меланомы человека при воздействии двух лекарственных форм аранозы. Российский биотерапевтический журнал 2017;16(3):52–8. DOI: 10.17650/1726-9784-2017-16-3-52-58.


Review

For citations:


Ponomarev A.V., Solodovnik A.A., Mkrtchyan A.S., Finashutina Yu.P., Turba A.A., Misyurin V.A., Misyurin A.V., Baryshnikova M.A. Relationship between deletion and point mutations of p53 and drug resistance to aranoza in human melanoma cell lines. Russian Journal of Biotherapy. 2018;17(1):64-69. (In Russ.) https://doi.org/10.17650/1726-9784-2018-17-1-64-69

Views: 450


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1726-9784 (Print)
ISSN 1726-9792 (Online)