The effects of aranose, cisplatin or paclitaxel in monotherapy and in combination on the expression of Pd–l1 and Pd–l2 in melanoma cells
https://doi.org/10.17650/1726-9784-2018-17-4-71-80
Abstract
Introduction. Currently, the following approaches are used for cancer treatment: surgical tumor removal, chemotherapy, targeted therapy and immunotherapy. The combination of different drugs may have additional advantages due to cumulative effect. Moreover, some additional effects like changes in PD–L1 and PD–L2 expression levels may be observed.
Aim. The aim of this study was to determinate the influence of aranose, cisplatin or paclitaxel and their combination on the expression of mRNA level and proteins PD–L1 and PD–L2 in melanoma cell lines and to compare the results with the differentiation status and with the appearance of mutations in melanoma cells.
Materials and methods. Melanoma cell lines used in this study were derived from surgical species of patients with disseminated melanoma. The mRNA expression level of PD–L1 and PD–L2 genes was measured by RQ-PCR. The expression of PD–L1 and PD–L2 proteins was measured by flow cytometry. The Pearson’s correlation and median test were used for statistical analysis.
Results. The expression level of PD–L2 gene was correlated with melanomas cell’s differentiation status (Pearson’s coefficient 0.937, p <0.15). The expression levels of PD–L1 gene and PD–L1 and PD–L2 proteins were not correlated with differentiation status of melanoma cells as well as TP53 mutations. In case of BRAF mutations the expression of PD–L2 was low detectable (p = 0.0117). It is worth noting that the TP53 mutations were associated with BRAF mutations (Pearson’s coefficient 1, p <0.15). The exposure of cells to aranose led to increased PD–L1 gene expression (p = 0,23). Incubation with cisplatin in combination with paclitaxel also resulted in an increase in PD–L1 protein expression (p = 0.037). Cisplatin or paclitaxel had no effect on the expression of PD–L1 protein. The expression level of PD–L2 gene and protein decreased under the action of any of these two drugs: these data are statistically (p = 0.6).
Conclusion. The tested drugs had no effect on the expression of PD–L1 and PD–L2 both at the protein level and at the mRNA level. It follows that the combination of anti-PD therapy and anticancer drugs, such as paclitaxel and aranose, will not potentially reduce the effectiveness of checkpoint therapy, and may have great prospects for future use in the creation of combined therapy protocols.About the Authors
A. A. RudakovaRussian Federation
24 Kashirskoe Shosse, Moscow 115478
V. A. Misyurin
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
A. V. Ponomarev
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
O. S. Burova
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
A. V. Misyurin
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
M. A. Baryshnikova
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
References
1. Berger M.F., Hodis E., Heffernan T.P. et al. Melanoma genome sequencing reveals frequent PREX2 mutations. Nature 2012;485(7399):502–6. PMID: 22622578. DOI: 10.1038/nature11071.
2. Pleasance E.D., Cheetham R.K., Stephens P.J. et al. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 2010;463(7278):191–6. PMID: 20016485. DOI: 10.1038/nature08658.
3. van den Hurk K., Niessen H.E., Veeck J. et al. Genetics and epigenetics of cutaneous malignant melanoma: a concert out of tune. Biochim Biophys Acta 2012;1826(1):89–102. PMID: 22503822. DOI: 10.1016/j.bbcan.2012.03.011.
4. Sosman J.A., Kim K.B., Schuschter L. et al. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med 2012;366(8):707–14. PMID: 22356324. DOI: 10.1056/NEJMoa1112302.
5. Jakob J.A., Bassett R.L. Jr., Ng C.S. et al. NRAS mutation status is an independent prognostic factor in metastatic melanoma. Cancer 2012;118(16):4014–23. PMID: 22180178. DOI: 10.1002/cncr. 26724.
6. Long G.V., Menzies A.M., Nagrial A.M. et al. Prognostic and clinicopathologic associations of oncogenic BRAF in metastatic melanoma. J Clin Oncol 2011;29(10):1239–46. PMID: 21343559. DOI: 10.1200/JCO.2010.32.4327.
7. Klein R.M., Aplin A.E. Rnd3 regulation of the actin cytoskeleton promotes melanoma migration and invasive outgrowth in three dimensions. Cancer Res 2009;69(6):2224–33. PMID: 19244113. DOI: 10.1158/0008-5472.CAN-08-3201.
8. Arozarena I., Sanchez-Laorden B., Packer L. et al. Oncogenic BRAF induces melanoma cell invasion by downregulating the cGMP-specific phosphodiesterase PDE5A. Cancer Cell 2011;19(1):45–57. PMID: 21215707. DOI: 10.1016/j.ccr.2010.10.029.
9. Zelboraf® (Vemurafenib) US prescribing information 2014. Genentech USA, Inc. South San Francisco, CA [Электронный ресурс]. URL: http://www.gene.com/download/pdf/zelboraf_prescribing.pdf.
10. Tafinlar® (Dabrafenib) US prescribing information 2014. GlaxoSmithKline. Research Triangle Park, NC [Электронный ресурс]. URL: http://us.gsk.com/products/assets/us_tafinlar. pdf.
11. Mekinist® (Trametinib) US prescribing information 2014. GlaxoSmithKline. Research Triangle Park, NC [Электронный ресурс]. URL: http://us.gsk.com/products/assets/us_mekinist. pdf.
12. Davies H., Bignell G.R., Cox C. et al. Mutations of the BRAF gene in human cancer. Nature 2002;417(6892):949–54. PMID: 12068308. DOI:10.1038/nature00766.
13. Ключагина Ю.И., Соколова З.А., Барышникова М.А. Роль рецептора PD1 и его лигандов PDL1 и PDL2 в иммунотерапии опухолей. Онкопедиатрия 2017;4(1):49–55. DOI: 10.15690/onco.v4i1.1684. [Klyuchagina Y.I., Sokolova Z.A., Baryshnikova M.A. Role of PD-1 Receptor and Its Ligands PD–L1 and PD–L2 in Cancer Immunotherapy. Onkopediatriya = Oncopediatrics 2017;4(1):49–55. (In Russ.)].
14. Чкадуа Г.З. Подходы к иммунотерапии опухолей. Российский биотерапевтический журнал 2016;15(1):118. [Chkadua G.Z. Approaches to Cancer Immunotherapy. Rossiysky Bioterapevtichesky Zhurnal = Russian Journal of Biotherapy 2016;15(1):118 (In Russ.)].
15. Барышникова М.А., Кособокова Е.Н., Косоруков В.С. Неоантигены в иммунотерапии опухолей. Российский биотерапевтический журнал 2018;17(2):6–14. DOI: 10.17650/1726-9784-2018-17-2-6-14. [Baryshnikova M.A., Kosobokova E.N., Kosorukov V.S. Neoantigens in tumor immunotherapy Rossiysky Bioterapevtichesky Zhurnal = Russian Journal of Biotherapy 2018;17(2):6–14. (In Russ.)].
16. Ishida Y., Agata Y., Shibahara K., Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 1992;11:3887–95. PMID: 1396582. DOI:10.1002/j.1460-2075.1992. tb05481. .
17. Пономарев А.В., Мисюрин В.А., Рудакова А.А. и др. Изменение экспрессии PD–L1 и PD–L2 в клеточных линиях меланомы человека при воздействии различных лекарственных форм аранозы и «пустых» липосом. Российский биотерапевтический журнал 2017;16(2):74–81. DOI: 10.17650/1726-9784-2017-16-2-74-81. [Ponomarev A.V., Misyurin V.A., Rudakova A.A. et al. The influence of aranoza drug formulations and “empty” liposomes on the expression of PD–L1 и PD–L2 in human melanoma cell lines. Rossiysky Bioterapevtichesky Zhurnal = Russian Journal of Biotherapy 2017;16(2):74–81. (In Russ.)].
18. Pedoeem A., Azoulay-Alfaguter I., Strazza M. et al. Programmed death-1 pathway in cancer and autoimmunity. Clin Immunol 2014;153(1):145–52. PMID:24780173. DOI:10.1016/j.clim.2014.04.010.
19. Francisco L.M., Sage P.T., Sharpe A.H. The PD-1 pathway in tolerance and auto-immunity. Immunol Rev 2010;236:219–42. PMID: 20636820. DOI: 10.1111/j.1600-065X.2010.00923.x.
20. Ishida M., Iwai Y., Tanaka Y. et al. Differential expression of PD–L1 and PD–L2, ligands for an inhibitory receptor PD-1, in the cells of lymphohematopoietic tissues. Immunol Lett 2002;84(1):57–62. PMID: 2161284. DOI: 10.1016/s0165-2478(02)00142-6.
21. Shin D.S., Ribas A. The evolution of checkpoint blockade as a cancer therapy: what’s here, what’s next? Curr Opin Immunol 2015;33:23–35. PMID: 25621841. DOI: 10.1016/j.coi.2015.01.006.
22. Рудакова А.А., Пономарев А.В., Бурова О.С. и др. Изменение уровня экспрессии лигандов белка PD1 в клетках линий меланомы человека после воздействия субстанции и липосомальной лекарственной форм аранозы Российский биотерапевтический журнал 2017;16(1):68. [Rudakova A.A., Ponomarev A.V., Burova O.S. et al. Change of PD1 ligands expression level after Aranose substance and liposomal drug formulation in melanoma cell lines. Rossiysky Bioterapevtichesky Zhurnal = Russian Journal of Biotherapy 2017;16(1):68. (In Russ.)].
23. Рудакова А.А., Мисюрин В.А., Пономарев А.В. и др. Возможность моделирования активности маркеров PD–L1 и PD–L2 на поверхности клеток меланомы. Российский биотерапевтический журнал 2018;17(спецвыпуск): 64. [Rudakova A.A., Misyurin V.A., Ponomarev A.V. et al. Modulation of PD–L1 and PD–L2 activity on melanoma cells. Rossiysky Bioterapevtichesky Zhurnal = Russian Journal of Biotherapy 2018;17(Special Issue): 64. (In Russ.)].
24. Intlekofer A.M., Thompson C.B. At the bench: preclinical rationale for CTLA-4 and PD-1 blockade as cancer immunotherapy. J Leukoc Biol 2013;94(1):25–39. PMID:23625198. DOI: 10.1189/jlb.1212621.
25. Iwai Y., Terawaki S., Honjo T. PD-1 blockade inhibits hematogenous spread of poorly immunogenic tumor cells by enhanced recruitment of effector T cells. Int Immunol 2005;17(2):133–44. MID: 15611321. DOI: 10.1093/intimm/dxh194.
26. Жуликов Я.А., Фетисов Т.И., Самойленко И.В., Демидов Л.В. Механизмы резистентности метастатической меланомы кожи к анти-PD-1 терапии. Российский биотерапевтический журнал 2018;17(1):34–46. DOI: 10.17650/1726-9784-2018-17-1-34-46. [Zhulikov Ya.A., Fetisov T.I., Samoylenko I.V., Demidov L.V. Mechanisms of resistance to anti-PD-1 therapy in metastatic cutaneous melanoma Rossiysky Bioterapevtichesky Zhurnal = Russian Journal of Biotherapy 2018;17(1):34–46. (In Russ.)].
27. Topalian S.L., Sznol M., McDermott D. F. et al. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol 2014;32:1020–30. PMID: 24590637. DOI: 10.1200/JCO.2013.53.0105.
28. Wargo J.A., Reuben A., Cooper Z.A. et al. Immune effects of chemotherapy, radiation, and targeted therapy and opportunities for combination with immunotherapy. Semin Oncol 2015;42(4):601–16. PMID: 26320064. DOI: 10.1053/j.seminoncol.2015.05.007.
29. Postow M.A., Chasalow S.D., Yuan J. et al. Pharmacodynamic effect of ipilimumab on absolute lymphocyte count (ALC) and association with overall survival in patients with advanced melanoma. J Clin Oncol 2013;31(15):abstr 9052. 30. Donia M., Fagone P., Nicoletti F. et al. BRAF inhibition improves tumor recognition by the immune system: potential implications for combinatorial therapies against melanoma involving adoptive T-cell transfer. Oncoimmunology 2012;1:1476–83. PMID: 23264894. DOI: 10.4161/onci.21940.
30. Frederick D.T., Piris A., Cogdill A.P. et al. BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin Cancer Res 2013;19:1225–31. PMID: 23307859. DOI: 10.1158/1078-0432.CCR-12-1630.
31. Jiang X., Zhou J., Giobbie-Hurder A. et al. The activation of MAPK in melanoma cells resistant to BRAF inhibition promotes PD–L1 expression that is reversible by MEK and PI3K inhibition. Clin Cancer Res 2013;19:598–609. PMID: 23095323. DOI: 10.1158/1078-0432.CCR-12-2731.
32. Cooper Z.A., Juneja V.R., Sage P.T. et al. Response to BRAF inhibition in melanoma is enhanced when combined with immune checkpoint blockade. Cancer Immunol Res 2014;2:643–54. PMID: 24903021. DOI: 10.1158/2326-6066.CIR-13-0215.
33. Ribas A., Hodi F.S., Callahan M. et al. Hepatotoxicity with combination of vemurafenib andipilimumab. N Engl J Med 2013;368(14):1365–6. PMID: 23550685. DOI: 10.1056/NEJMc1302338.
34. Dasari S., Tchounwou P.B. Cisplatin in cancer therapy: molecular mechanisms of action. Europ J Pharm 2014;740:364–78. РMID: 25058905. DOI: 10.1016/j. ejphar. 2014.07.025P.
35. Gottesman M.M., Fojo T., Bates S.E. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev 2002;2:48–58. PMID: 11902585. DOI: 10.1038/nrc706.
36. O’Dwyer P.J., Stevenson J.P., Johnson S.W. Clinical Pharmacokinetics and administration of established platinum drugs. Drugs 2000;59:19–27. PMID: 10864227. DOI: 10.2165/00003495-200059004-00003.
37. Мартынова М.А., Бушмакина И.М., Шуканова Н.А., Молчан М.М. Влияние нанолипосомальной формы паклитаксела на злокачественные опухоли женских репродуктивных органов. Российский биотерапевтический журнал 2018;17(спецвыпуск):44. [Martynova M.A., Bushmakina I.M., Shukanova N.A., Molchan M.M. Effect of nanoliposomal Paclitaxel on tumors of female reproductive system. Rossiysky Bioterapevtichesky Zhurnal = Russian Journal of Biotherapy 2018;17(Special Issue):44. (In Russ.)].
38. Rowinsky E.K., Donehower R.C. Paclita xel(taxol). N Engl J Med 1995;332:1004–14. PMID: 7885406. DOI: 10.1056/NEJM199504133321507.
39. Cortes J.E., Pazdur R. Docetaxel. J Clin Oncol 1995;13(10):2643–55. PMID: 7595719. DOI: 10.1200/JCO.1995.13.10.2643.
40. Gelmon K. The taxoids: paclitaxel and docetaxel. Lancet 1994;344:1267–72. PMID: 7967989. DOI:10.1016/s0140-6736(94)90754-4.
41. Von Hoff D.D., Ervin T., Arena F.P. et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 2013;369:1691–703. PMID: 24131140. DOI: 10.1056/NEJMoa1304369.
42. Gogas H., Bafaloukos D., Bedikian A.Y. The role of taxanes in the treatment of metastatic melanoma. Melanoma Res 2004;14:415–20. PMID: 15457099. DOI: 10.1097/00008390-200410000-00013.
43. Шпрах З.С., Игнатьева Е.В., Ярцева И.В. Валидация методики количественного определения аранозы в лекарственной форме. Российский биотерапевтический журнал 2018;17(спецвыпуск):84. [Shprakh Z.S., Ignateva E.V., Yartceva I.V. Validation of the method of quantitative determination of Aranose in a dosage form. Rossiysky Bioterapevtichesky Zhurnal = Russian Journal of Biotherapy 2018;17(Special Issue): 84. (In Russ.)].
44. Шпрах З.С., Игнатьева Е.В., Ярцева И.В. Разработка и валидация методики количественного определения аранозы в лекарственной форме. Российский биотерапевтический журнал 2018;17(2):57–62. DOI: 10.17650/1726-9784-2018-17-2-57-62. [Shprakh Z.S., Ignateva E.V., Yartseva I.V. Development and validation of aranosa assay in the dosage form. Rossiysky Bioterapevtichesky Zhurnal = Russian Journal of Biotherapy 2018;17(2):57–62. (In Russ.)].
45. Афанасьева Д.А., Барышникова М.А., Бурова О.С. и др. Активация инициаторных каспаз-8 и -9 под влиянием лекарственных форм аранозы. Российский биотерапевтический журнал 2016;15(1):7. [Afanasieva D.A., Baryshnikova M.A., Burova O.S. et al. Activation of initiator caspase-8 and -9 by aranose drug formulations. Rossiysky Bioterapevtichesky Zhurnal = Russian Journal of Biotherapy 2016;15(1):7. (In Russ.)].
46. Полозкова С.А., Горбунова В.А., Орел Н.Ф. Эффективность и токсичность комбинации аранозы и доксорубицином при метастатических нейроэндокринных неоплазиях. Российский биотерапевтический журнал 2016;15(1):88. [Polozkova S.A., Gorbunova V.A., Orel N.F. Effect and toxicity of Aranose and Doxorubicin combination on metastatic neuroendocrine tumors. Rossiysky Bioterapevtichesky Zhurnal = Russian Journal of Biotherapy 2016;15(1):88. (In Russ.)].
47. Полозкова С.А., Горбунова В.А., Делекторская В.В. и др. Факторы прогноза эффективности терапии нейроэндокринных новообразований режимами на основе Аранозы. Российский биотерапевтический журнал 2017;16(1):38–46. DOI: 10.17650/1726-9784-2017-16-1-38-46. [Polozkova S.A., Gorbunova V.A., Delektorskaya V.V. et al. Prognostic factors of the efficacy of aranoza-bazed therapy in neuroendocrine neoplasms. Rossiysky Bioterapevtichesky Zhurnal = Russian Journal of Biotherapy 2017;16(1):38–46 (In Russ.)].
48. Пономарев А.В., Мисюрин В.А., Рудакова А.А. и др. Изменение экспрессии мРНК MDM2 и NFkB1 в клеточных линиях меланомы человека при воздействии 2 лекарственных форм аранозы. Российский биотерапевтический журнал 2017;16(3):52–8. DOI: 10.17650/1726-9784-2017-16-3-52-58. [Ponomarev A.V., Misyurin V.A., Rudakova A.A. et al. The influence of drug formulations on the expression of MDM2 and NFkB1 mRNA in the melanoma cell lines Rossiysky Bioterapevtichesky Zhurnal = Russian Journal of Biotherapy 2017;16(3):52–8. (In Russ.)].
49. Харкевич Г.Ю., Егоров Г.Н., Манзюк Л.В. и др. Отечественные нитрозопроизводные в лечении меланомы кожи. Российский биотерапевтический журнал 2003;2(1):49–53. [Kharlevich G. Yu, Egorov G.N., Manzyuk L.V. et al. Russian nitrosoureas in skin melanoma therapy. Rossiysky Bioterapevtichesky Zhurnal = Russian Journal of Biotherapy 2003;2(1):49–53. (In Russ.)].
50. Михайлова И.Н., Лукашина М.И., Барышников А.Ю. и др. Клеточные линии меланомы – основа для создания противоопухолевых вакцин. Вестник РАМН 2005;76:37–40. [Mikhailova I.N., Lukashina M.I., Baryshnikov A.Yu., et al. Melanoma cell lines as the basis for antitumor vaccine preparation. Bulletin of RAMS = Annals of the Russian academy of medical sciences 2005;7:37–40.(In Russ.).].
51. Михайлова И.Н., Ковалевский Д.А., Бурова О.С. и др. Экспрессия раково-тестикулярных антигенов в клетках меланомы человека. Сибирский онкологический журнал 2010;37(1):29–39. [Mikhaylova I.N., Kovalevsky D.A., Burova O.S. Expression of Cancer Testis Antigens in Human Melanoma. Sibirskiy oncologicheskii journal = Siberian journal of Oncology 2010;37(1):29–39. (In Russ.)].
52. Рябая О.О., Цыганова И.В., Сидорова Т.И. и др. Влияние активирующих мутаций V600 гена B-RAF на способность клеток меланомы к аутофагии. Саркомы костей, мягких тканей и опухоли кожи 2013;3:68–72. [Ryabaya O.O., Tsyganova I.V., Sidorova Т.А. et al. Effect of Activating V600 mutations of the B-RAF gene on the ability of melanoma cells to autophagy. Sarkomy kostey, myagkikh tkaney i opukholi kozhi = Sarkomas of Bones, Soft Tissues and Skin Tumors 2013;(3):68–72. (In Russ.)].
53. Пономарев А.В., Солодовник А.А., Мкртчян А.С. и др. Связь делеций и точечных мутаций гена р53 с резистентностью клеточных линий метастатической меланомы кожи к аранозе. Российский биотерапевтический журнал 2018;17(1):64–9. DOI: 10.17650/1726-9784-2018-17-1-64-69. [Ponomarev A.V., Solodovnik A.A., Mkrtchyan A.S. et al. Relationship between deletion and point mutations of p53 and drug resistance to aranoza in human melanoma cell lines. Rossiysky Bioterapevtichesky Zhurnal = Russian Journal of Biotherapy 2018;17(1):64–9. (In Russ.)].
54. Chomczynski P., Sacchi N. The singlestep method of RNA isolation by acid guanidinium thiocyanate-phenolchloroform extraction. Anal Biochem 1987;1(2):581–5. PMID: 2440339. DOI: 10.1006/abio.1987.9999.
55. Moore F.R., Rempfer C.B., Press R.D. Quantitative BCR-ABL1 RQ-PCR fusion transcript monitoring in chronic myelogenous leukemia. Methods Mol Biol 2013;999:1–23. PMID: 23666687. DOI: 10.1007/978-1-62703-357-2_1.
Review
For citations:
Rudakova A.A., Misyurin V.A., Ponomarev A.V., Burova O.S., Misyurin A.V., Baryshnikova M.A. The effects of aranose, cisplatin or paclitaxel in monotherapy and in combination on the expression of Pd–l1 and Pd–l2 in melanoma cells. Russian Journal of Biotherapy. 2018;17(4):71-80. (In Russ.) https://doi.org/10.17650/1726-9784-2018-17-4-71-80