Study of antitumor activity of synthetic peptide ryqlhpyr on the prostate cancer cells
https://doi.org/10.17650/1726-9784-2019-18-2-40-50
Abstract
Introduction . The RHAMM (hyaluronan mediated mobility receptor) is overexpressed in many types of human cancer and increased synthesis of the RHAMM usually correlates with a poor prognostic factor. In this paper, we synthesized the peptide-RYQLHPYR modulating the activity of the RHAMM and examined the therapeutic potential of this RHAMM-targeting peptide as an antitumor agent.
Objective . Study the effect of the synthetic peptide RYQLHPYR on viability, apoptosis, necrosis, caspase-3 / 7 activity, and invasion of prostate cancer cells.
Materials and methods . The peptide RYQLHPYR was prepared by solid phase synthesis. Human prostate cancer cells (PC3 m-LN4), murine embryonic fibroblasts and murine embryonic fibroblasts (RHAMM- / -). To quantify the effect of the peptide on apoptosis and cell necrosis, ELISAPLUS was used. The activity of caspase-3 / 7 was determined by the colorimetric method. Evaluation of the anti-metastatic effect of the peptide in vitro was evaluated by invasion of cells by quantitative analysis of the area of degradation of fluorescent gelatin.
Results . It was found that the peptide RYQLHPYR inhibited the growth of tumor cells PC3 m-LN4 at a concentration of 10 μg / ml (2 × 10–7 M) after 24 h by ~80 %. It was shown that the peptide stimulated the level of apoptosis in cancer cells, approximately 10-fold. It was found that the peptide increased the necrotic death of tumor cells by 2.5 times. During the research it was revealed that the peptide increased the caspase-3 / 7 activity in tumor cells by 2 times. At the same time, it was shown that RHAMM-targeting peptide had no significant effect on apoptosis and necrosis of normal cells (fibroblasts) and fibroblasts (RHAMM- / -). It was found that the peptide inhibited invasion of tumor cells by ~99.86 % at a concentration of 10 μg / ml (2 × 10–7 M).
Conclusions . The obtained results indicate that the peptide RYQLHPYR has antitumor activity and, therefore, has a therapeutic potential for the treatment of prostate cancer.
About the Authors
N. P. AkentievaRussian Federation
Prospect Akademika Semenova, Chernogolovka 142432; 1 Prospect Akademika Semenova, Chernogolovka 142432.
S. S. Shushanov
Russian Federation
24 Kashyrskoe Sh., Moscow 115478.
References
1. Ferlay J., Soerjomataram I., Dikshit R. et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015;136(5):E359—86. DOI: 10.1002/ijc.29210.
2. Lehrer R.I. Primate defensins. Nat Rev Microbiol 2004;2(9):727-38. DOI: 10.1038/nrmicro976.
3. Hancock R.E. Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect Dis 2001;1(3):156—64. DOI: 10.1016/S1473-3099(01)00092-4.
4. Koczulla A.R., Bals R. Antimicrobial peptides: current status and therapeutic potential. Drugs 2003;63(4):389—406. DOI:10.2165/00003495-200363040-00005.
5. Otvos L.Jr. Antibacterail peptides and proteins with multiple cellular targets. J Pept Sci 2005;11(11):697—706. DOI: 10.1002/psc.698.
6. Nicolaou K.C., Jinyou X., Murphy F. et al. Total synthesis of sanglifehrin A. Chem Int Ed Engl 1999;38(16):2447-51.
7. Xia Z., Smith C.D. Total synthesis of dendroamide A, a novel cyclic peptide that reverses multiple drug resistance. J Org Chem 2001;66(10):3459—66.
8. Davies J.S. the cyclization of peptides and depsipeptides. J Peptide Sci 2003;9(8):471—501. DOI: 10.1002/psc.491.
9. Lyu P., Ge L., Ma R. et al. Identification and pharmaceutical evaluation of novel frog skin-derived serine proteinase inhibitor peptide-PE-BBI (Pelophylax esculentus Bowman-Birk inhibitor) for the potential treatment of cancer. Sci Rep 2018;8(1):14502. DOI: 10.1038/s41598-018-32947-5.
10. Zainodini N., Hassanshahi G., Hajizadeh M. et al. Nisin Induces Cytotoxicity and Apoptosis in Human Asterocytoma Cell Line (SW1088). Asian Pac J Cancer Prev 2018;19(8):2217-22. DOI: 10.22034/APJCP.2018.19.8.2217.
11. Tanner J.D., Deplazes E., Mancera R.L. the Biological and Biophysical Properties of the Spider Peptide Gomesin. Molecules 2018;23(7):E1733. DOI: 10.3390/molecules23071733.
12. Veloria J.R., Chen L., Li L. et al. Novel cell-penetrating-amyloid peptide conjugates preferentially kill cancer cells. MedChemComm 2017;9(1):121—30. DOI: 10.1039/c7md00321h.
13. Lindgren M., Rosenthal-Aizman K., Saar K. et al. Overcoming methotrexate resistance in breast cancer tumour cells by the use of a new cell-penetrating peptide. Biochem Pharmacol 2006;71(4):416—25. DOI: 10.1016/j.bcp.2005.10.048.
14. Liang J.F., Yang V.C. Synthesis of doxorubicin-peptide conjugate with multidrug resistant tumor cell killing activity. Bioorg Med Chem Lett 2005;15(22):5071—5. DOI: 10.1016/j.bmcl.2005.07.087.
15. Brogden K.A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 2005;3(3):238-50. DOI: 10.1038/nrmicro1098.
16. Mader J.S., Hoskin D.W. Cationic antimicrobial peptides as novel cytotoxic agents for cancer treatment. Expert Opin Investig Drugs 2006;15(8):933—46. DOI: 10.1517/13543784.15.8.933.
17. Yuan J., You X., Ni G. et al. Iodine-125 labeled Australian frog tree host-defense peptides caerin 1.1 and 1.9 better inhibit human breast cancer cells growth than the unlabeled peptides. 125I-caerin 1.9 may better be used for the treatment of breast cancer. Hell J Nucl Med 2018;21(2):115—20. DOI: 10.1967/s002449910803.
18. Уханова Т.М., Кулинич Е.А., Кудинова В.К. Терапевтические дозовые характеристики химерного пептида MM-D37K при парентеральном введении мышам BALB/C NUDE с колоректальным раком человека HCT-116. Российский биотерапевтический журнал 2017;16(2):36—41. DOI: 10.17650/1726-9784-2017-16-2- 36-41. [Ukhanova T.M., Kulinich E.A., Kudinova V.K. Therapeutic dose characteristics of the chimeric peptide MM-D37K when administered parenterally to BALB/C NUDE mice with human colorectal cancer HCT-116. Rossiysky bioterapevticheskiy zhurnal = Russian Biotherapeutic Journal 2017;16(2):36—41. (In Russ.)].
19. Xiang Y., Shan W., Huang Y. Improved anticancer efficacy of doxorubicin mediated by human-derived cell- penetrating peptide dNP2. Int J Pharm 2018;551(1—2):14—22. DOI: 10.1016/j.ijpharm.2018.09.011.
20. Kritzer J.A., Stephens O.M., Guarracino D.A. et al. р-Peptides as inhibitors of protein-protein interactions. Bioorg Med Chem 2005;13(1):11-6. DOI: 10.1016/j.bmc.2004.09.009.
21. Qvit N., Mochly-Rosen D. Highly Specific Modulators of Protein Kinase C Localization: Applications to Heart Failure. Drug Discov Today Dis Mech 2010;7(2):e87-e93. DOI: 10.1016/j.ddmec.2010.07.001.
22. Zhang X.X., Eden H.S., Chen X. Peptides in cancer nanomedicine: drug carriers, targeting ligands and protease substrates. J Control Release 2012;159(1):2-13. DOI: 10.1016/j.jconrel.2011.10.023.
23. Thayer A.M. Improving peptides. C&EN 2011;89(22):13—20.
24. Borghouts C., Kunz C., Groner B. Current strategies for the development of peptide-based anticancer therapeutics. J Pept Sci 2005;11(11):713—26. DOI: 10.1002/psc.717.
25. Platt V.M., Szoka F.C.Jr. Anticancer Therapeutics: targeting macromolecules and nanocarriers to hyaluronan or CD44, a hyaluronan receptor. Mol Pharm 2008;5(4):474—86. DOI: 10.1021/mp800024g.
26. Vives E., Schmidt J., Pelegrin A. Cell- penetrating and cell-targeting peptides in drug delivery. Biochim Biophys Acta 2008;1786(2):126—38. DOI: 10.1016/j.bbcan.2008.03.001.
27. Ijaz M., Wang F., Shahbaz M. et al. the Role of Grb2 in Cancer and Peptides as Grb2 Antagonists. Protein Pept Lett 2018;24(12):1084—95. DOI: 10.2174/ 0929866525666171123213148.
28. Lisabeth E.M., Falivelli G., Pasquale E.B. Eph receptor signaling and ephrins. Cold Spring Harb Perspect Biol 2013;5(9):a009159. DOI: 10.1101/cshperspect.a009159.
29. Lamberto I., Lechtenberg B.C., Olson E. et al. Development and structural analysis of a nanomolar cyclic peptide antagonist for the EphA4 receptor. ACS Chem Biol 2014;9:2787-95. DOI: 10.1021/cb500677x.
30. Wang Y., Menendez A., Fong C. et al. Ephrin B2/EphB4 mediates the actions of IGF-I signaling in regulating endochondral bone formation. J Bone Miner Res 2014;29:1900-13. DOI: 10.1002/jbmr.2196.
31. Accardo A., Aloj L., Aurilio M. et al. Receptor binding peptides for target- selective delivery of nanoparticles encapsulated drugs. Int J Nanomedicine 2014;9:1537-57. DOI: 10.2147/IJN.S53593.
32. Patel A.R., Chougule M., Singh M. EphA2 targeting pegylated nanocarrier drug delivery system for treatment of lung cancer. Pharm Res 2014; 31:2796-809. DOI: 10.1007/s11095-014-1377-4.
33. Maxwell C.A., McCarthy J., Turley E. Cell-surface and mitotic-spindle RHAMM: moonlighting or dual oncogenic functions? J Cell Sci 2008;121(Pt 7):925—32. DOI: 10.1242/jcs.022038.
34. Turley E. A., Naor D. RHAMM and CD44 peptides-analytic tools and potential drugs. Front Biosci (Landmark Ed) 2012;17:1775-94.
35. Tabarkiewicz J., Giannopoulos K. Definition of a target for immunotherapy and results of the first Peptide vaccination study in chronic lymphocytic leukemia. Transplant Proc 2010;42(8):3293—6. DOI: 10.1016/j. transproceed.2010.07.022.
36. Casalegno-Garduno R., Schmitt A., Schmitt M. Clinical peptide vaccination trials for leukemia patients. Expert Rev Vaccines 2011;10(6):785—99. DOI: 10.1586/erv.11.56.
37. Esguerra K.V., Tolg C., Akentieva N. et al. Identification, Design and Synthesis of Tubulin-Derived Peptides as Novel Hyaluronan Mimetic Ligands for the Receptor for Hyaluronan- Mediated Motility (RHAMM/HMMR). Integr Biol (Camb). 2015;7(12):1547—60. DOI: 10.1039/c5ib00222b.
38. Luyt L.G., Turley E.A., Esguerra K.V. Rhamm binding peptides. International Patent WO2011/150495. 2011. London Health Sciences Centre Research Inc.
39. Turley E.A., Noble P.W., Bourguignon L.Y. Signaling properties of hyaluronan receptors. J Biol Chem 2002;277(7):4589—92. DOI: 10.1074/jbc.R100038200.
40. Akentieva N.P., Shushanov S.S. Visualization of Ovarian Cancer Cells with Peptide VEGEGEEGEEY. Biochemistry (Moscow), Suppl A: Membrane and Cell Biology 2018; 12(2):189—98. DOI: 10.1134/S1990747818020022.
41. Акентьева Н.П., Шушанов С.С., Котельников А.И. Эффект RHAMM-селективных пептидов на выживаемость клеток рака молочной железы. Бюллетень экспериментальной биологии и медицины 2015;159(5):618—21. DOI: 10.1007/s10517-015-3041-3. [Akenteva N.P, Shushanov S.S, Kotelnikov A.I. Effects of RHAMM/ HMMR-Selective Peptides on Survival of Breast Cancer Cells. Byulleten’ eksperimental’noy biologii i meditsiny = Bulletin of Experimental Biology and Medicine 2015;159(5):618—21. (In Russ.)].
42. Акентьева Н.П., Шушанов С.С. Ингибирующий эффект RHAMM- таргет пептидов на инвазивность клеток рака молочной железы. Вопросы онкологии 2016;62(6):831—7. ISSN 0507-3758. [Akentieva N.P., Shushanov S.S. Inhibitory effect of RHAMM-target peptides on invasion of breast cancer cells. Voprosy onkologii = Problems in oncology 2016;62(6):831 —7 (In Russ.)].
43. Tolg C., Hamilton S.R., Nakrieko K.A. et al. Rhamm-/- fibroblasts are defective in CD44-mediated ERK1, 2 mitogenic signaling, leading to defective skin wound repair. J Cell Biol 2006;175(6):1017—28. DOI: 10.1083/jcb.200511027.
44. Made V., Els-Heindl S., Beck-Sickin- ger A.G. Automated solid-phase peptide synthesis to obtain therapeutic peptides. Beilstein J Org Chem 2014;10:1197—212. DOI: 10.3762/bjoc.10.118.
45. Schreer A., Tinson C., Sherry J.P., Schirmer K. Application of Alamar blue/5-carboxyfluorescein diacetate acetoxymethyl ester as a noninvasive cell viability assay in primary hepatocytes from rainbow trout. Anal Biochem 2005;344(1):76—85. DOI: 10.1016/j.ab.2005.06.009.
46. Terui Y., Furukawa Y., Kikuchi J. et al. Apoptosis during HL-60 cell differentiation is closely related to a G0/ G1 cell cycle arrest. J Cell Physiol 1995;164(1):74—7. DOI: 10.1002/jcp.1041640110.
47. Liu C.Y., Takemasa A., Liles W.C. et al. Broad-spectrum caspase inhibition paradoxically augments cell death in TNF-alfa-stimulated neutrophils. Blood 2003;101(1):295—304. DOI: 10.1182/blood-2001-12-0266.
48. Pradhan N., Pratheek B.M., Garai A. et al. Induction of apoptosis by Fe (salen) Cl through caspase-dependent pathway specifically in tumor cells. Cell Biol Int 2014;38(10):1118—31. DOI: 10.1002/cbin.10308.
49. Artym V.V., Yamada K.M., Mueller S.C. ECM degradation assays for analyzing local cell invasion. Methods Mol Biol 2009;522:211—9. DOI: 10.1007/978-1-59745-413-1_15.
50. Xu C., Wang Y., Yu X. et al. Evaluation of human mesenchymal stem cells response to biomimetic bioglass- collagen-hyaluronic acid-phospha- tidylserine composite scaffolds for bone tissue engineering. J Biomed Mater Res A 2009;88(1):264—73. DOI: 10.1002/jbm.a.31931.
51. Rizzardi A.E., Vogel R.I., Koopmeiners J.S. et al. Elevated hyaluronan and hyaluronan-mediated motility receptor are associated with biochemical failure in patients with intermediate-grade prostate tumors. Cancer 2014;120(12): 1800—9. DOI: 10.1002/cncr.28646.
52. Efremov R.G., Baradaran R., Sazanov LA. the architecture of respiratory complex I Nature 2010;465(7297):441—5. DOI: 10.1038/nature09066.
53. Барышников А.Ю., Шишкин Ю.В. Иммунологические проблемы апоптоза. М.: Эдиториал УРСС, 2002. [Baryshnikov A.Yu., Shishkin Yu.V. Immunological problems of apoptosis. M.: Editorial URSS, 2002. (In Russ.)].
54. Льюин Б., Кассимерис Л., Лингаппа В. и др. Клетки. М.: Бином. Лаборатория знаний, 2011. [Lewin B., Kassimeris L., Langappa V. et al. Cells. Moscow: Binom. Laboratoriya znaniy, 2011. (In Russ.)].
55. Гордеева А.В., Лабас Ю.А., Звягильская Р.А. Апоптоз одноклеточных организмов: механизмы и эволюция. Биохимия 2004;69(10):1301—13. [Gordeeva A.V., Labas Yu.A., Zvyagilskaya R.A. Apoptosis of unicellular organisms: mechanisms and evolution. Biokhimiya = Biochemistry 2004;69(10):1301—13. (In Russ)].
56. Cory S. Apoptosis. Fascinating death factor. Nature 1994;367(6461):317—8. DOI: 10.1038/367317a0.
57. Smith C.A., Farrah T., Goodwin R.G. The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell 1994;76(6):959—62.
58. Wiley S.R., Schooley K., Smolak PJ. et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 1995;3(6):673—82.
59. Pitti R.M., Marsters S.A., Ruppert S. et al. Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem1996;271(22):12687—90.
60. Nagata S. Apoptosis by death factor. Cell 1997;88(3):355—65.
61. Tartaglia L., Goeddel D.V. Two TNF receptors. Immunol Today 1992;13(5):151—3. DOI: 10.1016/0167-5699(92)90116-0.
62. Peter M.E., Heufelder A.E., Hengartner M.O. Advances in apoptosis research. Proc Natl Acad Sci USA 1997;94(24):12736—7.
63. Alberts B., Johnson A., Levis J. at al. Molecular biology of the cell. 5th Edn. Garland Sci 2008.
64. Qian T., Nieminen A.L., Herman B. et al. Mitochondrial permeability transition in pH-dependent reperfusion injury to rat hepatocytes. Am J Physiol 1997;273(6 Pt 1):1783—92.
65. Petit P.X., Susin S.A., Zamzami N. et al. Mitochondria and programmed cell death: back to the future. FEBS Lett 1996;396(1):7—13.
66. Манских В.Н. Пути гибели клетки и их биологическое значение. Цитология 2007;49(11):909—15. [Manskikh V.N. Pathways of cell death and their biological importance. Tsitologiya = Citology 2007;49(11): 909-15 (In Russ.)].
67. Broker L.E., Kruyt F.A., Giaccone G. Cell death independent of caspases: a review. Clin Cancer Res 2005;11(9):3155—62. DOI: 10.1158/1078-0432.CCR-04-2223.
68. Akentieva N. RHAMM-target peptides inhibit invasion of breast cancer cells. EBTJ 2017;1:138-148. DOI: 10.24190/ ISSN2564-615X/2017/02.05.
69. Akentieva N.P., Shushanov S.S. Inhibition of cancer cell invasiveness by the synthetic peptides GEGEEGEE and DFGEEAEE. Biochemistry (Moscow), Suppl A: Membrane and Cell Biology 2017;11(1):24—34. DOI: 10.1134/S1990747816040127
Review
For citations:
Akentieva N.P., Shushanov S.S. Study of antitumor activity of synthetic peptide ryqlhpyr on the prostate cancer cells. Russian Journal of Biotherapy. 2019;18(2):40-50. (In Russ.) https://doi.org/10.17650/1726-9784-2019-18-2-40-50