Preview

Российский биотерапевтический журнал

Расширенный поиск

Терафтал снижает чувствительность опухолевых клеток к доксорубицину in vitro, но не влияет на его противоопухолевый эффект in vivo .

https://doi.org/10.17650/1726-9784-2019-18-2-51-59

Полный текст:

Аннотация

Введение . Антрациклиновый антибиотик доксорубицин (DOX) широко используется в клинической онкологии. Известно, что гемин, эндогенный метаболит, обладает способностью модулировать цитотоксичность DOX. По нашим данным, токсичность DOX для опухолевых клеток млекопитающих, растущих in vitro, снижается в присутствии терафтала (ТФ, натриевая соль 4,5-октакарбоксифталоцианина кобальта), компонента бинарной каталитической системы (ТФ + аскорбиновая кислота).

Цель исследования – выяснить, влияет ли ТФ на противоопухолевый эффект DOX in vivo.

Материалы и методы. В работе были использованы опухолевые клетки меланомы мыши линии В16 / F10 и перевиваемая опухоль меланомы В16. Способность ТФ защищать опухолевые клетки от гибели, индуцированной DOX, оценивали с помощью МТТ-метода, проточной цитометрии, световой микроскопии, цитохимического метода определения экспрессии ß-галактозидазы, радиометрического метода. Противоопухолевый эффект препаратов в режимах (DOX ± ТФ) оценивался по продолжительности жизни животных.

Результаты. По нашим данным, токсичность DOX относительно клеток меланомы мышей линии В16 / F10 в присутствии ТФ (10–20 мкМ) снижается в среднем в 4–6 раз. ТФ защищает опухолевые клетки линии В16 / F10 от гибели путем апоптоза, индуцированного DOX, включая в клетке программу преждевременного старения. В защите ТФ / гемина от цитотоксичности DOX участвует один и тот же механизм, который связан со снижением способности клеток «накапливать» антрациклиновые антибиотики в присутствии модуляторов. Противоопухолевая активность DOX при лечении мышей с перевиваемой опухолью меланомы В16 в комбинации с ТФ не отличается от эффективности антрациклиновых антибиотиков в режиме монотерапии.

Заключение. Способность ТФ снижать цитотоксичность DOX для клеток меланомы мышей линии В16 / F10, наблюдаемая in vitro, не влияет на противоопухолевый эффект DOX в условиях комбинированного воздействия препаратов. 

Об авторах

Т. А. Сидорова
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н. Н. Блохина» Минздрава России.
Россия

115478 Москва, Каширское ш., 24.



О. О. Рябая
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н. Н. Блохина» Минздрава России.
Россия
115478 Москва, Каширское ш., 24.


А. А. Прокофьева
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н. Н. Блохина» Минздрава России.
Россия
115478 Москва, Каширское ш., 24.


В. В. Татарский
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н. Н. Блохина» Минздрава России.
Россия
115478 Москва, Каширское ш., 24.


А. А. Андронова
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н. Н. Блохина» Минздрава России.
Россия
115478 Москва, Каширское ш., 24.


В. И. Романенко
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н. Н. Блохина» Минздрава России.
Россия
115478 Москва, Каширское ш., 24.


Д. А. Хоченков
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н. Н. Блохина» Минздрава России.
Россия
115478 Москва, Каширское ш., 24.


Список литературы

1. Arcamone F.M. Fifty years of chemical research at Farmitalia. Chemistry 2009;15(32):7774—91. DOI: 10.1002/chem.200900292.

2. Gewirtz D.A. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthra- cycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 1999;57:727-41. DOI: 10.1016/s0006-2952.(98)00307-4.

3. Doroshow J.H. Anthracycline antibiotic- stimulated superoxide, hydrogen peroxide, and hydroxyl radical production by NADH dehydrogenase. Cancer Res 1983;43(10):4543-51.

4. Kagan V.E., Bayir H.A., Belikova N.A. et al. Cytochrome c/cardiolipin relations in mitochondria: a kiss of death. Free Radic Biol Med 2009;46(11):1439-53. DOI: 10.1016/j.freeradbiomed. 2009.03.004.

5. Tarasiuk J., Frezard F., Garnier- Suillerot A., Gattegno L. Anthracycline incorporation in human lymphocytes. Kinetics of uptake and nuclear concentration. Biochim Biophys Acta 1989;1013(2):109-17. DOI: 10.1016/0167-4889(89)90038-4.

6. Swift L.P., Rephaeli A., Nudelman A. et al. Doxorubicin-DNA adducts induce a non-topoisomerase II-mediated form of cell death. Cancer Res 2006;66(9):4863—71. DOI: 10.1158/0008-5472.can-05-3410.

7. Skladanowski A., Konopa J. Interstrand DNA crosslinking induced by anthra- cyclines in tumour cells. Biochem Pharmacol 1994;47(12):2269—78. DOI: 10.1016/0006-2952(94)90265-8.

8. Tewey K.M., Rowe T.C., Yang L. et al. Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. Science 1984;226(4673):466—8. DOI: 10.1126/science.6093249.

9. Hajji N., Mateos S., Pastor N. et al. Induction of genotoxic and cytotoxic damage by aclarubicin, a dual topoisomerase inhibitor. Mutat Res 2005;583(1):26—35. DOI: 10.1016/j. mrgentox.2005.01.012.

10. Mordente A., Meucci E., Martorana G.E. et al. Topoisomerases and Anthracycli- nes: Recent Advances and Perspectives in Anticancer Therapy and Prevention of Cardiotoxicity. Curr Med Chem 2017;24(15):1607—26. DOI: 10.2174/ 0929867323666161214120355.

11. Dartsch D.C., Schaefer A., Boldt S. et al. Comparison of anthracycline-induced death of human leukemia cells: programmed cell death versus necrosis. Apoptosis 2002;7(6):537—48. DOI: 10.1023/a:1020647211557.

12. Bogason A., Bhuiyan H., Masquelier M. et al. Uptake of anthracyclines in vitro and in vivo in acute myeloid leukemia cells in relation to apoptosis and clinical response. Eur J Clin Pharmacol 2009;65(12):1179—86. DOI: 10.1007/s00228-009-0734-4.

13. Koceva-Chyla A., Jedrzejczak M., Skierski J. et al. Mechanisms of induction of apoptosis by anthra- quinone anticancer drugs aclarubicin and mitoxantrone in comparison with doxorubicin: relation to drug cytotoxicity and caspase-3 activation. Apoptosis 2005;10(6):1497—514. DOI: 10.1007/s10495-005-1540-9.

14. Olszewska-Slonina D., Drewa T., Czajkowski R., Olszewski K. Effect of adriblastin on viability, cell cycle and apoptosis in B16 and cloudman s91 mouse melanoma cells in vitro. Acta Pol Pharm 2004;61(6):439—46.

15. Itzhaki O., Kaptzan T., Skutelsky E. et al. Age-adjusted antitumoral therapy based on the demonstration of increased apoptosis as a mechanism underlying the reduced malignancy of tumors in the aged. Biochim Biophys Acta 2004;1688(2):145—59. DOI: 10.1016/j.bbadis.2003.11.009.

16. Chang B.D., Broude E.V., Dokmanovic M. et al. A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Res 1999;59:3761—7.

17. te Poele R.H., Okorokov A.L., Jardine L. et al. DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res 2002;62(6):1876—83.

18. Rogalska A., Koceva-Chyla A., Jozwiak Z. Aclarubicin-induced ROS generation and collapse of mitochondrial membrane potential in human cancer cell lines. Chem Biol Interact 2008;176(1):58—70. DOI: 10.1016/j.cbi.2008.07.002.

19. Litwiniec A., Grzanka A., Helmin-Basa A. et al. Features of senescence and cell death induced by doxorubicin in A549 cells: organization and level of selected cytoskeletal proteins. J Cancer Res Clin Oncol 2010;136(5):717—36. DOI: 10.1007/s00432-009-0711-4.

20. Eom Y.W., Kim M.A., Park S.S. et al. Two distinct modes of cell death induced by doxorubicin: apoptosis and cell death through mitotic catastrophe accompa¬nied by senescence-like phenotype. Oncogene 2005;24(30):4765—77. DOI: 10.1038/sj.onc.1208627.

21. Joyner D.E., Bastar J.D., Randall R.L. Doxorubicin induces cell senescence preferentially over apoptosis in the FU-SY-1 synovial sarcoma cell line. J Orthop Res 2006;24(6):1163—9. DOI: 10.1002/jor.20169.

22. Zingoni A., Cecere F., Vulpis E. et al. Genotoxic Stress Induces Senescence- Associated ADAM10-Dependent Release of NKG2D MIC Ligands in Multiple Myeloma Cells. J Immunol 2015;195(2):736—48. DOI: 10.4049/jimmunol.1402643.

23. Dabritz J.H., Yu Y., Milanovic M. et al. CD20-Targeting Immunotherapy Promotes Cellular Senescence in B-Cell Lymphoma. Mol Cancer Ther 2016;15(5):1074—81. DOI: 10.1158/ 1535-7163.MCT-15-0627.

24. Forrest R.A., Swift L.P., Rephaeli A. et al. Activation of DNA damage response pathways as a consequence of anthracycline-DNA adduct formation. Biochem Pharmacol 2012;83(12):1602—12. DOI: 10.1016/j.bcp.2012.02.026.

25. Gewirtz D.A., Alotaibi M., Yakovlev V.A., Povirk L.F. Tumor Cell Recovery from Senescence Induced by Radiation with PARP Inhibition. Radiat Res 2016;186(4):327—32. DOI: 10.1667/rr14437.1.

26. Svensson S.P., Lindgren S., Powell W., Green H. Melanin inhibits cytotoxic effects of doxorubicin and daunorubicin in MOLT 4 cells. Pigment Cell Res 2003;4:351—4. DOI: 10.1034/j.1600-0749.2003.00030.x.

27. Heaney M.L., Gardner J.R., Karasavvas N. et al. Vitamin C antagonizes the cytotoxic effects of antineoplastic drugs. Cancer Res 2008;68(19):8031—8. DOI: 10.1158/0008-5472.can-08-1490.

28. Tsiftsoglou A.S., Wong W., Wheeler C. et al. Prevention of anthracycline-induced cytotoxicity in hemopoietic cells by he- min. Cancer Res 1986;46(7):3436—40.

29. Papadopoulou L.C., Tsiftsoglou A.S. Effects of hemin on apoptosis, suppression of cytochromec oxidase gene expression, and bone- marrow toxicity induced by doxorubicin (adriamycin). Biochem Pharmacol 1996;52(5):713—22. DOI: 10.1016/0006-2952(96)00349-8.

30. Nagai T., Kikuchi S., Ohmine K.et al. Hemin reduces cellular sensitivity to imatinib and anthracyclins via Nrf2. J Cell Biochem 2008;104(2):680—91. DOI: 10.1002/jcb.21659.

31. Bohmer R.M., Hoffmann K., Morstyn G. Hematoporphyrin derivative and anthracyclines mutually inhibit cellular uptake and toxicity. Cancer Chemother Pharmacol 1987;20(1):16—20. DOI: 10.1007/bf00252953.

32. Сидорова Т.А., Какпакова Е.С., Власенкова Н.К. и др. Различная реакция на терафтал культивируемых in vitro клеток, экспрессирующих Р-глико- протеин, и клеток, не экспрессирующих этот белок. Цитология 2001;43:889-90. [Sidorova T.A., Kakpakova E.S., Vlasenkova N.K. et al. the different reaction in vitro the cell cultures, expressed or not P-glycoprotein, to teraphtal. Tsitologiya = Citology 2001;43:889-90. (In Russ.)].

33. Сидорова Т.А., Рябая О.О., Татарский В.В. и др. Терафтал (натриевая соль 4,5-октакарбоксифталоцианина кобальта снижает чувствительность опухолевых клеток к антрациклиновым антибиотикам и митоксантрону in vitro. Клиническая онкогематология 2018;1:10-25. DOI: 10.21320/2500- 2139-2018-11-1-10-25.

34. [Sidorova T.A., Ryabaya O.O.,

35. Tatarskiy V.V. et al. Teraphtal (sodium salt of 4,5-carboxyphtalocyanin-cobalt) decreased the sensitivity tumor cells to anthracyclines and mithoxantrone in vitro. Klinicheskaya onkologiya = Clinical Oncohematology 2018;1:10-25. (In Russ.)].

36. Aniogo E.C., George B.P.A., Abrahamse H. Phthalocyanine induced phototherapy coupled with Doxorubicin; a promising novel treatment for breast cancer. Expert Rev Anticancer Ther 2017;17(8):693—702. DOI: 10.1080/14737140.2017.1347505.

37. Сидорова Т.А., Вагида М.С., Калия О.Л., Герасимова Г.К. Роль каталазы в защите опухолевых клеток от окислительного стресса, индуцированного бинарной каталитической системой («терафтал + аскорбиновая кислота»). Клиническая онкогематология 2014;3:282-289. [Sidorova T.A., Vagida M.S., Kaliya O.L., Gerasimova G.K. The part of catalase in defence against oxydaive stress of cancer cells induced by binaric catalytic system. Klinicheskaya onkologiya = Clinical oncohematology 2014;3:282-9 (In Russ.)].

38. Dimri G.P., Lee X., Basile G. et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 1995;92(20):9363—7. DOI: 10.1073/ pnas.92.20.9363.

39. Миронов А.Н., Бунатян Н.Д., Васильев А.Н. и др. Руководство по проведению доклинических исследований лекарственных средств. М.: Гриф и К, 2012, Ч.1. С.642-56. [Mironov A.N., Bunatyan N.D., Vasil’yev A.N. et al. Guidelines for preclinical trials of drugs . M.: 2012, v.1. P.642-56. (In Russ.)].

40. Forrest R.A., Swift L.P., Rephaeli A. et al. Activation of DNA damage response pathways as a consequence of anthracycline-DNA adduct formation. Biochem Pharmacol 2012;83(12):1602—12. DOI: 10.1016/j.bcp.2012.02.026


Для цитирования:


Сидорова Т.А., Рябая О.О., Прокофьева А.А., Татарский В.В., Андронова А.А., Романенко В.И., Хоченков Д.А. Терафтал снижает чувствительность опухолевых клеток к доксорубицину in vitro, но не влияет на его противоопухолевый эффект in vivo . Российский биотерапевтический журнал. 2019;18(2):51-59. https://doi.org/10.17650/1726-9784-2019-18-2-51-59

For citation:


Sidorova T.A., Ryabaya O.O., Prokof’yeva A.A., Tatarskiy V.V., Andronova N.A., Romanenko V.I., Khochenkov D.A. Teraphtal decreased the sensitivity tumor cells to doxorubicine in vitro but does not affect its antitumor effect in vivo . Russian Journal of Biotherapy. 2019;18(2):51-59. (In Russ.) https://doi.org/10.17650/1726-9784-2019-18-2-51-59

Просмотров: 37


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1726-9784 (Print)
ISSN 1726-9792 (Online)