Preview

Российский биотерапевтический журнал

Расширенный поиск

Современные противовирусные биомедицинские клеточные продукты и перспективы их применения в терапии COVID-19

https://doi.org/10.17650/1726-9784-2022-21-2-19-32

Полный текст:

Аннотация

За короткий промежуток времени было разработано несколько типов вакцин против COVID-19. Однако именно группы риска по тяжелому течению COVID-19 (пожилые люди, лица с подавленным иммунитетом, такие как онкологические пациенты или пациенты после пересадки органов) хуже всего развивают адекватный иммунный ответ на вакцинацию. Поэтому для получения защитных реакций у данных групп следует применять вакцины на основе таких биомедицинских клеточных продуктов (БМКП), как дендритные клетки (ДК), нагруженные антигенами SARS-CoV-2 ex vivo в оптимальных условиях. В некоторых случаях, когда вакцинация не была проведена своевременно, а риск тяжелого заболевания велик, целесообразно немедленно предпринять меры для защиты организма от вируса, инфицировавшего организм.

Для подобного протективного действия могут использоваться другие БМКП – лимфоциты с химерным рецептором антигенов (chimeric antigen receptors, CAR). Такие рецепторы распознают антигены при помощи модифицированных доменов антител, то есть вне контекста молекул главного комплекса гистосовместимости. Поэтому возможно применение для экстренных нужд донорских эффекторных CAR-лимфоцитов, которые были заготовлены заранее. CAR-лимфоциты в настоящее время используются главным образом для противоопухолевой терапии. До 2020 г. велось достаточно ограниченное количество исследований противовирусных CAR-лимфоцитов. Однако пандемия COVID-19 привела к резкой интенсификации подобных работ. ДК, которые считаются наиболее эффективными антигенпрезентирующими клетками, тоже первоначально использовались в качестве противоопухолевых вакцин. Безопасность ДК-вакцин, их высокая эффективность в случае присутствия целевого антигена достаточно быстро привели к тому, что экспериментаторы стали пытаться применять ДК также в качестве терапевтического агента при хронических вирусных заболеваниях типа гепатитов B и C, вирусе иммунодефицита человека.

В настоящем обзоре суммируются данные о противовирусных БМКП, которые были разработаны к настоящему времени, особое внимание уделяется продуктам против COVID-19. Обсуждается, каким образом результаты предыдущих исследований могут быть применены для увеличения эффективности БМКП, направленных против COVID-19.

Об авторах

И. О. Чикилева
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н. Н. Блохина» Минздрава России
Россия

Ирина Олеговна Чикилева

115478 Москва, Каширское шоссе, 24



И. Ж. Шубина
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н. Н. Блохина» Минздрава России
Россия

115478 Москва, Каширское шоссе, 24



М. В. Киселевский
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н. Н. Блохина» Минздрава России
Россия

115478 Москва, Каширское шоссе, 24



Список литературы

1. Li C.X., Noreen S., Zhang L.X. et al. A critical analysis of SARS-CoV-2 (COVID-19) complexities, emerging variants, and therapeutic interventions and vaccination strategies. Biomed Pharmacother 2022;146:112550. DOI: 10.1016/j.biopha.2021.112550

2. Sarubbo F., El Haji K., Vidal-Balle A., Bargay Lleonart J. Neurological consequences of COVID-19 and brain related pathogenic mechanisms: a new challenge for neuroscience. Brain Behav Immun Health 2022;19:100399. DOI: 10.1016/j.bbih.2021.100399

3. Jean S.S., Lee P.I., Hsueh P.R. Treatment options for COVID-19: the reality and challenges. J Microbiol Immunol Infect 2020;53(3):436–43. DOI: 10.1016/j.jmii.2020.03.034

4. Zinatizadeh M.R., Zarandi P.K., Zinatizadeh M. et al. Efficacy of mRNA, adenoviral vector, and perfusion protein COVID-19 vaccines. Biomed Pharmacother 2022;146:112527. DOI: 10.1016/j.biopha.2021.112527

5. Logunov D.Y., Dolzhikova I.V., Shcheblyakov D.V. et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet 2021;397(10275):671–81. DOI: 10.1016/S0140-6736(21)00234-8

6. Galmiche S., Luong Nguyen L.B., Tartour E. et al. Immunological and clinical efficacy of COVID-19 vaccines in immuno-compromised populations: a systematic review. Clin Microbiol Infect 2022;28(2):163–77. DOI: 10.1016/j.cmi.2021.09.036

7. Zhou R., To K.K., Wong Y.C. et al. Acute SARS-CoV-2 infection impairs dendritic cell and T cell responses. Immunity 2020;53(4):864–77.e.5. DOI: 10.1016/j.immuni.2020.07.026

8. Filin I.Y., Kitaeva K.V., Rutland C.S. et al. Recent advances in experimental dendritic cell vaccines for cancer. Front Oncol 2021;11:730824. DOI: 10.3389/fonc.2021.730824

9. Zhang X., Gordon J.R., Xiang J. Advances in dendritic cell-based vaccine of cancer. Cancer Biother Radiopharm 2002;17(6):601–19. DOI: 10.1089/108497802320970217

10. Sadeghzadeh M., Bornehdeli S., Mohahammadrezakhani H. et al. Dendritic cell therapy in cancer treatment; the state-of-the-art. Life Sci 2020;254:117580. DOI: 10.1016/j.lfs.2020.117580

11. Saadeldin M.K., Abdel-Aziz A.K., Abdellatif A. Dendritic cell vaccine immunotherapy; the beginning of the end of cancer and COVID-19. A hypothesis. Med Hypotheses 2021;146:110365. DOI: 10.1016/j.mehy.2020.110365

12. Brusko M.A., Stewart J.M., Posgai A.L. et al. Immunomodulatory dual-sized microparticle system conditions human antigen presenting cells into a tolerogenic phenotype in vitro and inhibits type 1 diabetes-specific autoreactive T cell responses. Front Immunol 2020;11:574447. DOI: 10.3389/fimmu.2020.574447

13. Adorini L., Penna G., Giarratana N., Uskokovic M. Tolerogenic dendritic cells induced by vitamin D receptor ligands enhance regulatory T cells inhibiting allograft rejection and autoimmune diseases. J Cell Biochem 2003;88(2):227–33. DOI: 10.1002/jcb.10340

14. Shen C., Wang Z., Zhao F. et al. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA 2020;323(16):1582–9. DOI: 10.1001/jama.2020.4783

15. Tosta E. The protective immunity induced by SARS-CoV-2 infection and vaccination: a critical appraisal. Explor Immunol 2021;1:199–225. DOI: 10.37349/ei.2021.00014

16. Zohar T., Loos C., Fischinger S. et al. Compromised humoral functional evolution tracks with SARS-CoV-2 mortality. Cell 2020;183(6):1508–19.e12. DOI: 10.1016/j.cell.2020.10.052

17. Wu Y., Huang Z., Harrison R. et al. Engineering CAR T cells for enhanced efficacy and safety. APL Bioeng 2022;6(1):011502. DOI: 10.1063/5.0073746

18. Maus M.V., Grupp S.A., Porter D.L., June C.H. Antibody-modified T cells: CARs take the front seat for hematologic malignancies. Blood 2014;123(17):2625–35. DOI: 10.1182/blood-2013-11-492231

19. Pule M.A., Savoldo B., Myers G.D. et al. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat Med 2008;14(11):1264–70. DOI: 10.1038/nm.1882

20. Loskog A., Giandomenico V., Rossig C. et al. Addition of the CD28 signaling domain to chimeric T-cell receptors enhances chimeric T-cell resistance to T regulatory cells. Leukemia 2006;20(10):1819–28. DOI: 10.1038/sj.leu.2404366

21. Hombach A.A., Abken H. Costimulation by chimeric antigen receptors revisited the T cell antitumor response benefits from combined CD28‒OX40 signalling. Int J Cancer 2011;129(12):2935–44. DOI: 10.1002/ijc.25960

22. Finney H.M., Akbar A.N., Lawson A.D. Activation of resting human primary T cells with chimeric receptors: costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCRζ chain. J Immunol 2004;172(1): 104–13. DOI: 10.4049/jimmunol.172.1.104

23. Maude S.L., Frey N., Shaw P.A. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 2014;371(16):1507–17. DOI: 10.1056/NEJMoa1407222

24. Zhang Y., Li P., Fang H. et al. Paving the way towards universal chimeric antigen receptor therapy in cancer treatment: current landscape and progress. Front Immunol 2020;11:604915. DOI: 10.3389/fimmu.2020.604915

25. Wu J., Mishra H.K., Walcheck B. Role of ADAM17 as a regulatory checkpoint of CD16A in NK cells and as a potential target for cancer immunotherapy. J Leukoc Biol 2019;105(6):1297–303. DOI: 10.1002/JLB.2MR1218-501R

26. Walcheck B., Wu J. iNK-CD64/16A cells: a promising approach for ADCC? Expert Opin Biol Ther 2019;19(12):1229–32. DOI: 10.1080/14712598.2019.1667974.

27. Phase I–II Trial of dendritic cell vaccine to prevent COVID-19 in adults. Available at: https://clinicaltrials.gov/ct2/show/NCT04386252.

28. Immunity and safety of Covid-19 synthetic minigene vaccine. Available at: https://clinicaltrials.gov/ct2/show/NCT04276896?term=DC&cond=SARS+CoV+2+Infection&draw=2&rank=1.

29. Zhou Q., Gu H., Sun S. et al. Large-sized graphene oxide nanosheets increase DC-T-cell synaptic contact and the efficacy of DC vaccines against SARS-CoV-2. Adv Mater 2021;33(40):e2102528. DOI: 10.1002/adma.202102528

30. Reuter T., Heldmann M., Schimmer S. et al. Protection of mice against Friend retrovirus infection by vaccination with antigen-loaded, spleen-derived dendritic cells. Vaccine 2004;22(21–22):2686–9. DOI: 10.1016/j.vaccine.2004.01.005

31. Norton T.D., Miller E.A. Recent advances in lentiviral vaccines for HIV-1 infection. Front Immunol 2016;7:243. DOI: 10.3389/fimmu.2016.00243

32. Mohamed H., Miller V., Jennings S.R. et al. The evolution of dendritic cell immunotherapy against HIV-1 infection: improvements and outlook. J Immunol Res 2020;2020:9470102. DOI: 10.1155/2020/9470102

33. Norton T.D., Zhen A., Tada T. et al. Lentiviral vector-based dendritic cell vaccine suppresses HIV replication in humanized mice. Mol Ther 2019;27(5):960–73. DOI: 10.1016/j.ymthe.2019.03.008

34. Miller E., Spadaccia M., Sabado R. et al. Autologous aldrithiol-2-inactivated HIV-1 combined with polyinosinic-polycytidylic acid-poly-L-lysine carboxymethylcellulose as a vaccine platform for therapeutic dendritic cell immunotherapy. Vaccine 2015;33(2):388–95. DOI: 10.1016/j.vaccine.2014.10.054

35. Hong B., Lee S.H., Song X.T. et al. A super TLR agonist to improve efficacy of dendritic cell vaccine in induction of anti-HCV immunity. PLoS One 2012;7(11):e48614. DOI: 10.1371/journal.pone.0048614

36. Zhou Y., Zhao F., Chen L. et al. Development of a dendritic cell vaccine encoding multiple cytotoxic T lymphocyte epitopes targeting hepatitis C virus. Int J Mol Med 2013;32(4):901–9. DOI: 10.3892/ijmm.2013.1466

37. Mekonnen Z.A., Masavuli M.G., Yu W. et al. Enhanced T cell responses induced by a necrotic dendritic cell vaccine, expressing HCV NS3. Front Microbiol 2020;11:559105. DOI: 10.3389/fmicb.2020.559105

38. Ostanin A.A., Chernykh E.R. Autologous dendritic cell vaccine for treatment of patients with chronic HCV-infection. Available at: https://clinicaltrials.gov/ct2/show/study/NCT03119025?term=DC+vaccine&cond=Hepatitis+C&draw=2&rank=1.

39. Chernykh E., Leplina O., Oleynik E. et al. Immunotherapy with interferon-α-induced dendritic cells for chronic HCV infection (the results of pilot clinical trial). Immunol Res 2018;66(1):31–43. DOI: 10.1007/s12026-017-8967-2

40. Phase I–II vaccination of autologous dendritic cells transduced with adenoviral vector encoding NS3 in hepatitis C encoding NS3 in hepatitis C. Available at: https://clinicaltrials.gov/ct2/show/study/NCT02309086?term=DC+vaccine&cond=Hepatitis+C&draw=2&rank=2.

41. Chen M., Li Y.G., Zhang D.Z. et al. Therapeutic effect of autologous dendritic cell vaccine on patients with chronic hepatitis B: a clinical study. World J Gastroenterol 2005;11(12):1806–8. DOI: 10.3748/wjg.v11.i12.1806

42. A Clinical Trial on Hepatitis B Vaccine Activated-Dendritic Cells Combined With Anti-HBV Drugs in CHB (CTHBVACADCHB). Available at: https://clinicaltrials.gov/ct2/show/NCT02615639?term=DC+vaccine&cond=Hepatitis+B&draw=2&rank=1.

43. Luo J., Li J., Chen R.L. et al. Autologus dendritic cell vaccine for chronic hepatitis B carriers: a pilot, open label, clinical trial in human volunteers. Vaccine 2010;28(13):2497–504. DOI: 10.1016/j.vaccine.2010.01.038

44. Akbar S.M., Furukawa S., Horiike N. et al. Safety and immuno-genicity of hepatitis B surface antigen-pulsed dendritic cells in patients with chronic hepatitis B. J Viral Hepat 2011;18(6):408–14. DOI: 10.1111/j.1365-2893.2010.01320.x

45. Wei M.J., Pan X.N., Wei K.P. et al. Efficacy of HBV-pulsed DCs in combination with entecavir in patients with chronic hepatitis B infection. Int Immunopharmacol 2015;27(2):238–43. DOI: 10.1016/j.intimp.2015.06.019

46. Yang J.Y., Cao D.Y., Liu W.C. et al. Dendritic cell generated from CD34 + hematopoietic progenitors can be transfected with adenovirus containing gene of HBsAg and induce antigen-specific cytotoxic T cell responses. Cell Immunol 2006;240(1):14–21. DOI: 10.1016/j.cellimm.2006.06.005

47. Long J., Zhou B., Li H. et al. Improvement of HBsAg gene-modified dendritic cell-based vaccine efficacy by optimizing immunization method or the application of β-glucosylceramide. Immunol Invest 2013;42(2):137–55. DOI: 10.3109/08820139.2012.744418

48. Chemaly R.F., Ullmann A.J., Stoelben S. et al. Letermovir for cytomegalovirus prophylaxis in hematopoietic-cell transplantation. N Engl J Med 2014;370(19):1781–9. DOI: 10.1056/NEJMoa1309533

49. Van Craenenbroeck A.H., Smits E.L., Anguille S. et al. Induction of cytomegalovirus-specific T cell responses in healthy volunteers and allogeneic stem cell recipients using vaccination with messenger RNA-transfected dendritic cells. Transplantation 2015;99(1):120–7. DOI: 10.1097/TP.0000000000000272

50. Ma C.K.K., Clancy L., Simms R. et al. Adjuvant peptide pulsed dendritic cell vaccination in addition to T cell adoptive immunotherapy for cytomegalovirus infection in allogeneic hematopoietic stem cell transplantation recipients. Biol Blood Marrow Transplant 2018;24(1):71–7. DOI: 10.1016/j.bbmt.2017.08.028

51. Cytomegalovirus (CMV) RNA-pulsed dendritic cells for pediatric patients and young adults with WHO grade IV glioma, recurrent malignant glioma, or recurrent medulloblastoma (ATTAC-P). Available at: https://clinicaltrials.gov/ct2/show/study/NCT03615404?term=DC&cond=CMV&draw=2&rank=1.

52. Ueno K., Kinjo Y., Okubo Y. et al. Dendritic cell-based immunization ameliorates pulmonary infection with highly virulent Cryptococcus gattii. Infect Immun 2015;83(4):1577–86. DOI: 10.1128/IAI.02827-14

53. Ueno K., Urai M., Ohkouchi K. et al. Dendritic cell-based vaccine against fungal infection. Methods Mol Biol 2016;1403:537–49. DOI: 10.1007/978-1-4939-3387-7_30

54. Ueno K., Urai M., Takatsuka S. et al. Immunization with antigen-pulsed dendritic cells against highly virulent Cryptococcus gattii infection: analysis of cytokine-producing T cells. Methods Mol Biol 2017;1625:327–39. DOI: 10.1007/978-1-4939-7104-6_22

55. Silva L.B.R., Dias L.S., Rittner G.M.G. et al. Dendritic cells primed with Paracoccidioides brasiliensis peptide P10 are therapeutic in immunosuppressed mice with paracoccidioidomycosis. Front Microbiol 2017;8:1057. DOI: 10.3389/fmicb.2017.01057

56. Grifoni A., Weiskopf D., Ramirez S.I. et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 2020;181(7):1489–501.e15. DOI: 10.1016/j.cell.2020.05.015

57. Premkumar L., Segovia-Chumbez B., Jadi R. et al. The receptor binding domain of the viral spike protein is an immunodominant and highly specific target of antibodies in SARS-CoV-2 patients. Sci Immunol 2020;5(48):eabc8413. DOI: 10.1126/sciimmunol.abc8413

58. Hoffmann M., Kleine-Weber H., Schroeder S. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020;181(2):271–80.e8. DOI: 10.1016/j.cell.2020.02.052

59. Letko M., Marzi A., Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol 2020;5(4):562–9. DOI: 10.1038/s41564-020-0688-y

60. Hoffmann M., Kleine-Weber H., Pöhlmann S. A Multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol Cell 2020;78(4):779–84.e5. DOI: 10.1016/j.molcel.2020.04.022

61. Cao Y., Su B., Guo X. et al. Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patientsʼ B cells. Cell 2020;182(1):73–84.e16. DOI: 10.1016/j.cell.2020.05.025

62. Shi R., Shan C., Duan X. et al. A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2. Nature 2020;584(7819):120–4. DOI: 10.1038/s41586-020-2381-y

63. Guo X., Kazanova A., Thurmond S. et al. Effective chimeric antigen receptor T cells against SARS-CoV-2. iScience 2021;24(11):103295. DOI: 10.1016/j.isci.2021.103295

64. Tian X., Li C., Huang A. et al. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg Microbes Infect 2020;9(1):382–5. DOI: 10.1080/22221751.2020.1729069

65. Mehrabadi A.Z., Ranjbar R., Farzanehpour M. et al. Therapeutic potential of CAR T cell in malignancies: a scoping review. Biomed Pharmacother 2022;146:112512. DOI: 10.1016/j.biopha.2021.112512

66. Björkström N.K., Strunz B., Ljunggren H.G. Natural killer cells in antiviral immunity. Nat Rev Immunol 2022;22(2):112–23. DOI: 10.1038/s41577-021-00558-3

67. Carlsten M., Childs R.W. Genetic manipulations of NK cells for cancer immunotherapy. Front Immunol 2015;6:266. DOI: 10.3389/fimmu.2015.00266

68. Simonetta F., Alvarez M., Negrin R.S. Natural killer cells in graft-versus-host-disease after allogeneic hematopoietic cell transplantation. Front Immunol 2017;8:465. DOI: 10.3389/fimmu.2017.00465

69. Shah N., Li L., McCarty J. et al. Phase I study of cord bloodderived natural killer cells combined with autologous stem cell transplantation in multiple myeloma. Br J Haematol 2017;177(3):457–66. DOI: 10.1111/bjh.14570

70. Heipertz E.L., Zynda E.R., Stav-Noraas T.E. et al. Current perspectives on “off-the-shelf” allogeneic NK and CAR-NK cell therapies. Front Immunol 2021;12:732135. DOI: 10.3389/fimmu.2021.732135

71. Mo F., Mamonkin M., Brenner M.K., Heslop H.E. Taking T-cell oncotherapy off-the-shelf. Trends Immunol 2021;42(3):261–72. DOI: 10.1016/j.it.2021.01.004

72. Ma M., Badeti S., Geng K., Liu D. Efficacy of targeting SARS-CoV-2 by CAR-NK cells. bioRxiv 2020;2020.08.11:247320. Preprint. DOI: 10.1101/2020.08.11.247320

73. Ma M., Badeti S., Chen C.H. et al. CAR-NK cells effectively target the D614 and G614 SARS-CoV-2-infected cells. bioRxiv 2021;2021.01.14:426742. Preprint. DOI: 10.1101/2021.01.14.426742

74. Ma M.T., Badeti S., Chen C.H. et al. CAR-NK cells effectively target SARS-CoV-2-spike-expressing cell lines in vitro. Front Immunol 2021;12:652223. DOI: 10.3389/fimmu.2021.652223

75. Pinto D., Park Y.J., Beltramello M. et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature 2020;583(7815):290–5. DOI: 10.1038/s41586-020-2349-y

76. Fu W., Lei C., Ma Z. et al. CAR macrophages for SARS-CoV-2 immunotherapy. Front Immunol 2021;12:669103. DOI: 10.3389/fimmu.2021.669103

77. Christodoulou I., Rahnama R., Ravich J.W. et al. Glycoprotein targeted CAR-NK cells for the treatment of SARS-CoV-2 infection. Front Immunol 2021;12:763460. DOI: 10.3389/fimmu.2021.763460

78. A phase I/II study of universal off-the-shelf NKG2D-ACE2 CAR-NK cells for therapy of COVID-19. Available at: https://clinicaltrials.gov/ct2/show/NCT04324996?term=CAR&cond=COVID-19&draw=2&rank=1.

79. Sohail A., Yu Z., Arif R. et al. Piecewise differentiation of the fractional order CAR-T cells-SARS-2 virus model. Results Phys 2022;33:105046. DOI: 10.1016/j.rinp.2021.105046

80. Al-Utaibi K.A., Nutini A., Sohail A. et al. Forecasting the action of CAR-T cells against SARS-corona virus-II infection with branching process. Model Earth Syst Environ 2021:1–9. Online ahead of print. DOI: 10.1007/s40808-021-01312-3

81. Zhu T., Xiao Y., Meng X. et al. Nanovesicles derived from bispecific CAR-T cells targeting the spike protein of SARS-CoV-2 for treating COVID-19. J Nanobiotechnology 2021;19(1):391. DOI: 10.1186/s12951-021-01148-0

82. Bednar C., Ensser A. CARs – a new perspective to HCMV treatment. Viruses 2021;13(8):1563. DOI: 10.3390/v13081563

83. Seif M., Einsele H., Löffler J. CAR T cells beyond cancer: hope for immunomodulatory therapy of infectious diseases. Front Immunol 2019;10:2711. DOI: 10.3389/fimmu.2019.02711

84. Slabik C., Kalbarczyk M., Danisch S. et al. CAR-T cells targeting Epstein-Barr virus gp350 validated in a humanized mouse model of EBV Infection and lymphoproliferative disease. Mol Ther Oncolytics 2020;18:504–24. DOI: 10.1016/j.omto.2020.08.005

85. Tang X., Zhou Y., Li W. et al. T cells expressing a LMP1-specific chimeric antigen receptor mediate antitumor effects against LMP1-positive nasopharyngeal carcinoma cells in vitro and in vivo. J Biomed Res 2014;28(6):468–75. DOI: 10.7555/JBR.28.20140066

86. Kieser A., Sterz K.R. The latent membrane protein 1 (LMP1). Curr Top Microbiol Immunol 2015;391:119–49. DOI: 10.1007/978-3-319-22834-1_4

87. LMP1 CAR-T for Patients With LMP1 positive infectious diseases and hematological malignancies. Available at: https://www.clinicaltrials.gov/ct2/show/NCT04657965?term=CAR&cond=Infections&draw=2&rank=3.

88. Maldini C.R., Ellis G.I., Riley J.L. CAR T cells for infection, autoimmunity and allotransplantation. Nat Rev Immunol 2018;18(10):605–16. DOI: 10.1038/s41577-018-0042-2

89. Liu L., Patel B., Ghanem M.H. et al.Novel CD4-based bispecific chimeric antigen receptor designed for enhanced anti-HIV potency and absence of HIV entry receptor activity. J Virol 2015;89(13):6685–94. DOI: 10.1128/JVI.00474-15

90. Zhen A., Peterson C.W., Carrillo M.A. et al. Long-term persistence and function of hematopoietic stem cell-derived chimeric antigen receptor T cells in a nonhuman primate model of HIV/AIDS. PLoS Pathog 2017;13(12):e1006753. DOI: 10.1371/journal.ppat.1006753

91. Leslie G.J., Wang J., Richardson M.W. et al. Potent and broad inhibition of HIV-1 by a peptide from the gp41 heptad repeat-2 domain conjugated to the CXCR4 amino terminus. PLoS Pathog 2016;12(1):e1005983. DOI: 10.1371/journal.ppat.1005983

92. Maldini C.R., Gayout K., Leibman R.S. et al. HIV-resistant and HIV-specific CAR-modified CD4+ T cells mitigate HIV disease progression and confer CD4+ T cell help in vivo. Mol Ther 2020;28(7):1585–99. DOI: 10.1016/j.ymthe.2020.05.012

93. Jiang Z., Liang H., Pan H. et al. HIV-1-specific CAR-T cells with cell-intrinsic PD-1 checkpoint blockade enhance anti-HIV efficacy in vivo. Front Microbiol 2021;12:684016. DOI: 10.3389/fmicb.2021.684016

94. Pampusch M.S., Abdelaal H.M., Cartwright E.K. et al. CAR/ CXCR5-T cell immunotherapy is safe and potentially efficacious in promoting sustained remission of SIV infection. PLoS Pathog 2022;18(2):e1009831. DOI: 10.1371/journal.ppat.1009831

95. Lim R.M., Rong L., Zhen A., Xie J. A universal CAR-NK cell targeting various epitopes of HIV-1 gp160. ACS Chem Biol 2020;15(8):2299–310. DOI: 10.1021/acschembio.0c00537

96. Kim G.B., Hege K., Riley J.L. CAR talk: how cancer-specific CAR T cells can instruct how to build CAR T cells to cure HIV. Front Immunol 2019;10:2310. DOI: 10.3389/fimmu.2019.02310

97. CD4 CAR+ ZFN-modified T cells in HIV therapy. Available at: https://clinicaltrials.gov/ct2/show/NCT03617198.

98. CAR-T cells for HIV infection. Available at: https://www.clinicaltrials.gov/ct2/show/NCT04648046?term=CAR&cond=Infections&draw=2&rank=1.

99. Third-Generation CAR-T-cell Therapy in Individuals With HIV-1 Infection (TCTIWHI). Available at: https://www.clinicaltrials.gov/ct2/show/NCT04863066?term=CAR&cond=Infections&draw=2&rank=2.

100. The effect of chimeric antigen receptor (CAR)-T cell therapy on the reconstitution of HIV-specific immune function. Available at: https://www.clinicaltrials.gov/ct2/show/NCT03240328?term=CAR&cond=Infections&draw=2&rank=10.

101. Meng Z., Chen Y., Lu M. Advances in targeting the innate and adaptive immune systems to cure chronic hepatitis B virus infection. Front Immunol 2020;10:3127. DOI: 10.3389/fimmu.2019.03127

102. Bohne F., Chmielewski M., Ebert G. et al. T cells redirected against hepatitis B virus surface proteins eliminate infected hepatocytes. Gastroenterology 2008;134(1):239–47. DOI: 10.1053/j.gastro.2007.11.002

103. Krebs K., Böttinger N., Huang L.R. et al. T cells expressing a chimeric antigen receptor that binds hepatitis B virus envelope proteins control virus replication in mice. Gastroenterology 2013;145(2):456–65. DOI: 10.1053/j.gastro.2013.04.047

104. Kruse R.L., Shum T., Tashiro H. et al. HBsAg-redirected T cells exhibit antiviral activity in HBV-infected human liver chimeric mice. Cytotherapy 2018;20(5):697–705. DOI: 10.1016/j.jcyt.2018.02.002

105. Klopp A., Schreiber S., Kosinska A.D. et al. Depletion of T cells via inducible caspase 9 increases safety of adoptive T-Cell therapy against chronic hepatitis B. Front Immunol 2021;12:734246. DOI: 10.3389/fimmu.2021.734246

106. Festag M.M., Festag J., Fräßle S.P. et al. Evaluation of a fully human, hepatitis B virus-specific chimeric antigen receptor in an immunocompetent mouse model. Mol Ther 2019;27(5):947–59. DOI: 10.1016/j.ymthe.2019.02.001

107. Sautto G.A., Wisskirchen K., Clementi N. et al. Chimeric antigen receptor (CAR)-engineered T cells redirected against hepatitis C virus (HCV) E2 glycoprotein. Gut 2016;65(3):512–23. DOI: 10.1136/gutjnl-2014-308316


Рецензия

Для цитирования:


Чикилева И.О., Шубина И.Ж., Киселевский М.В. Современные противовирусные биомедицинские клеточные продукты и перспективы их применения в терапии COVID-19. Российский биотерапевтический журнал. 2022;21(2):19-32. https://doi.org/10.17650/1726-9784-2022-21-2-19-32

For citation:


Chikileva I.O., Shubina I.Z., Kiselevskiy M.V. Modern antiviral biomedical cell products and their applications for COVID-19 therapy. Russian Journal of Biotherapy. 2022;21(2):19-32. (In Russ.) https://doi.org/10.17650/1726-9784-2022-21-2-19-32

Просмотров: 71


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1726-9784 (Print)
ISSN 1726-9792 (Online)