Preview

Российский биотерапевтический журнал

Расширенный поиск

СТРУКТУРА И СВОЙСТВА ОСНОВНЫХ РЕЦЕПТОРОВ И ЛИГАНДОВ ВНЕШНЕГО ПУТИ АПОПТОЗА

https://doi.org/10.17650/1726-9784-2015-14-2-23-30

Полный текст:

Аннотация

Апоптоз может начаться как по внутренним причинам, так и может быть запущен извне. Передачу апоптотического сигнала внутрь клетки осуществляют несколько гомологичных друг другу рецепторов. Для активации сигнала эти рецепторы должны связаться со своими лигандами. Так, рецептор FAS связывается с FAS-лигандом, рецептор TNFR1 - с TNFα, рецепторы TRAIL-R1 и TRAIL-R2 - с лигандом TRAIL и наконец, DR3 - с лигандом TL1A. Чаще всего, чтобы осуществить апоптоз, лиганды должны находиться в мембраносвязанной форме. Рецепторы FAS и TNFR1 запускают апоптоз только в том случае, если интернализуются в цитоплазму клетки-мишени. Если FAS и TNFR1 не интернализуются, то запускают антиапоптотическую программу. Рецепторы TRAIL-R1, TRAIL-R2 и DR3 не подвергаются интернализации при запуске апоптоза. Известны также рецепторы TNFR2, TRAIL-R3 и TRAIL-R4, которые активируют антиапоптотическую программу. Апоптотический сигнал начинается со сборки комплекса DISC на внутренней стороне цитоплазматической мембраны. В состав DISC обязательно входят белки FADD и прокаспаза-8, которые связываются с внутриклеточным доменом апоптотического рецептора. Если комплекс DISC не формируется, сигнал передаётся на NFкB-путь через каскад MAP-киназы, и запускается антиапоптотическая программа. Многообразие рецепторов и лигандов позволяет осуществлять множество функций, в том числе устранение заражённых или трансформированных клеток, начинать и завершать воспаление, модулировать процессы онтогенеза, кроветворения и выработки антител.

Об авторе

Всеволод Андреевич Мисюрин
ФГБНУ «РОНЦ им. Н.Н. Блохина»
Россия


Список литературы

1. Барышников А.Ю. Программируемая клеточная смерть (апоптоз) // Клиническая онкогематология. Фундаментальные исследования и клиническая практика. - 2001. - С. 36.

2. Барышников А.Ю., Шишкин Ю.В. FAS/APO-1 антиген - молекула, опосредующая апоптоз // Гематология и трансфузиология. - 1995. - № 6. - С. 35.

3. Барышников А.Ю., Шишкин Ю.В. Программированная клеточная смерть (апоптоз) // Российский онкологический журнал. - 1996. - № 1. - С. 58.

4. Карапетян В.Л., Степанова Е.В., Барышников А.Ю., Никогосян С.О., Кузнецов В.В. Экспрессия маркеров апоптоза (Р53, BCL-2, BAX) и их прогностическое значение при эпителиальных новообразованиях яичников ранних стадий // Российский биотерапевтический журнал. - 2011. - Т. 10, № 2. - С. 45-9.

5. Короленкова Л.И., Степанова Е.В., Барышников А.Ю. Молекулярно-биологические маркеры пролиферации и апоптоза, как факторы прогрессии цервикальных интраэпителиальных неоплазий и рака шейки матки // Российский биотерапевтический журнал. - 2010. - Т. 9, № 4. - С. 11-6.

6. Кохно А.В., Савченко В.Г., Паровичникова Е.Н. и др. Апоптоз и пролиферативная активность клеток костного мозга у больных апластическими синдромами по данным трепанобиопсии // Терапевтический архив. - 2001. -№ 7. - С. 51.

7. Тагиров О.Т., Кравченко Г.А., Козлов А.Ю. и др. Растворимый FAS(CD95) белок, ингибирующий апоптоз как прогностический биомаркер течения рака молочной железы // Вестник Нижегородского университета им. Н.И. Лобачевского. Серия: Биология. - 2001. - № 1. С. - 21-5.

8. Уткин О.В., Сахарнов Н.А., Преснякова Н.Б. и др. Экспрессия СD95/Fas в клетках крови при раке толстой кишки // Российский биотерапевтический журнал. - 2013. - Т. 12, № 1. - С. 23-9.

9. Adam D., Wiegmann K., Adam-Klages S. et al. A novel cytoplasmic domain of the p55 tumor necrosis factor receptor initiates the neutral sphingomyelinase pathway // J. Biol. Chem. - 1996. - 271. - P. 14617-22.

10. Aggarwal B.B. Signalling pathways of the TNF superfamily: a double-edged sword // Nature Reviews Immunology. - 2003. - 3(9). - P. 745-56.

11. Baryshnikov A.Y., Zabotina T.N., Sedyakhina N.P. et al. The coexpression of cd34-antigen of early hemopoietic precursors and FAS/APO-1 (CD95)-antigen mediating apoptosis // Experimental Oncology. - 1994. - 16. - P. 343.

12. Black R.A., Rauch C.T., Kozlosky C.J. et al. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells // Nature. - 1997. - 385. - P. 729-33.

13. Blott E.J., Bossi G., Clark R. et al. Fas ligand is targeted to secretory lysosomes via a proline-rich domain in its cytoplasmic tail // J. Cell Sci. - 2001. - 114. - P. 2405-16.

14. Bodmer J.L., Burns K., Schneider P. et al. TRAMP, a novel apoptosis-mediating receptor with sequence homology to tumor necrosis factor receptor 1 and Fas(Apo-1/CD95) // Immunity. - 1997. - 6. - P. 79-88.

15. Bradley J.R. TNF-mediated inflammatory disease // J Pathol. - 2008. - 214(2). - P. 149-60.

16. Chakrabandhu K., Huault S., Garmy N. et al. The extracellular glycosphingolipid-binding motif of Fas defines its internalization route, mode and outcome of signals upon activation by ligand // Cell Death Differ. - 2008. - 15. - P. 182437.

17. Cheng J., Liu C., Koopman W.J., Mountz J.D. Characterization of human Fas gene. Exon/intron organization and promoter region // J. Immunol. - 1995. - 154. - P. 1239-45.

18. Condorelli G., Vigliotta G., Cafieri A. PED/PEA-15: an anti-apoptotic molecule that regulates FAS/TNFR1-induced apoptosis // Oncogene. - 1999. - 18(31). - P. 4409-15.

19. Dembic Z., Loetscher H., Gubler U. et al. Two human TNF receptors have similar extracellular, but distinct intracellular, domain sequences // Cytokine. - 1990. - 2. - P. 231-7.

20. Ea C.K., Deng L., Xia Z.P., Pineda G., Chen Z.J. Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO // Mol. Cell. - 2006. - 22. - P. 245-57.

21. Edmond V., Dufour F., Poiroux G. et al. Downregulation of ceramide synthase-6 during epithelial-to-mesenchymal transition reduces plasma membrane fluidity and cancer cell motility // Oncogene. - 2014 doi: 10.1038/onc.2014.55. [Epub ahead of print]

22. Falschlehner C., Ganten T.M., Koschny R. et al. TRAIL and other TRAIL receptor agonists as novel cancer therapeutics // Adv. Exp. Med. Biol. - 2009. - 647. - P. 195-206.

23. Huang B., Eberstadt M., Olejniczak E.T. NMR structure and mutagenesis of the Fas (APO-1/CD95) death domain // Nature. - 1996. - 384(6610). - P. 638-41.

24. Irmler M., Thome M., Hahne M. Inhibition of death receptor signals by cellular FLIP // Nature. - 1997. - 388(6638). -P. 190-5.

25. Janssen O., Qian J., Linkermann A., Kabelitz D. CD95 ligand - Death factor and costimulatory molecule? // Cell Death Differ. - 2003. - 10. - P. 1215-25.

26. Ji W., Li Y., Wan T. et al. Both internalization and AIP1 association are required for tumor necrosis factor receptor 2-mediated JNK signaling // Arteriosclerosis, Thrombosis, and Vascular Biology. - 2012. - 32(9). - P. 2271-9.

27. Kelliher M.A., Grimm S., Ishida Y. The death domain kinase RIP mediates the TNF-induced NF-kappaB signal // Immunity. - 1998. - 8(3). - P. 297-303.

28. Kischkel F.C., Hellbardt S., Behrmann I. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor // EMBO J. - 1995. - 14(22). - P. 5579-88.

29. Kohlhaas S.L., Craxton A., Sun X.M. et al. Receptor-mediated endocytosis is not required for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis // J. Biol. Chem. - 2007. - 282. - P. 12831-41.

30. LeBlanc H.N., Ashkenazi A. Apo2L/TRAIL and its death and decoy receptors // Cell Death Differ. - 2003. - 10(1). - P. 66-75.

31. Li H., Kobayashi M., Blonska M., You Y., Lin X. Ubiquitination of RIP is required for tumor necrosis factor alpha-induced NF-kappaB activation // J. Biol. Chem. - 2006. - 281. - P. 13636-43.

32. Malleter M., Tauzin S., Bessede A. CD95L cell surface cleavage triggers a prometastatic signaling pathway in triplenegative breast cancer // Cancer Res. - 2013. - 73(22). - P. 6711-21.

33. Marsters S.A., Sheridan J.P., Donahue C.J. et al. Apo-3, a new member of the tumor necrosis factor receptor family, contains a death domain and activates apoptosis and NF-kappa Β // Curr. Biol. - 1996. - 6. - P. 1669-76.

34. McCarthy E.F. The Toxins of William Β. Coley and the Treatment of Bone and Soft-Tissue Sarcomas // Iowa Orthop J. - 2006. - 26. - P. 154-8.

35. Meylan F., Richard A.C., Siegel R.M. TL1A and DR3, a TNF family ligand-receptor pair that promotes lymphocyte costimulation, mucosal hyperplasia, and autoimmune inflammation // Immunol Rev. - 2011. - 244(1). - P. 188-96.

36. Micheau O., Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell. - 2003. - 114. - P. 181-90.

37. Migone T.S., Zhang J., Luo X. et al. TL1A is a TNF-like ligand for DR3 and TR6/DcR3 and functions as a T cell costimulator // Immunity. - 2002. - 16. - P. 479-92.

38. Mitsiades N., Yu W.H., Poulaki V. et al. Matrix metalloproteinase-7-mediated cleavage of Fas ligand protects tumor cells from chemotherapeutic drug cytotoxicity // Cancer Res. - 2001. - 61. - P. 577-81.

39. Moreno E., Yan M., Basler K. Evolution of TNF signaling mechanisms: JNK-dependent apoptosis triggered by Eiger, the Drosophila homolog of the TNF superfamily // Curr Biol. - 2002. - 12(14). - P. 1263-8.

40. Old L.J. Tumor necrosis factor (TNF) // Science. - 1985. - 230(4726). - P. 630-2.

41. Pan G., O’Rourke K., Chinnaiyan A.M. et al. The receptor for the cytotoxic ligand TRAIL // Science. - 1997. - 276. -P. 111-3.

42. Parlato S., Giammarioli A.M., Logozzi M. et al. CD95 (APO-1/Fas) linkage to the actin cytoskeleton through ezrin in human T lymphocytes: A novel regulatory mechanism of the CD95 apoptotic pathway // EMBO J. - 2000. - 19. - P. 5123-34.

43. Peter M.E., Krammer P.H. The CD95(APO-1/Fas) DISC and beyond // Cell Death Differ. - 2003. - 10. - P. 26-35.

44. Polosukhina E.R., Baryshnikov A.Yu., Shishkin Yu.V. et al. Expression of antigen CD95(FAS/APO-1) mediating apoptosis in hemoblastoses using monoclonal antibodies ICO-160 // Гематология и трансфузиология. - 2000. - 45(4). - P. 3-6.

45. Ptisyna Y.S., Bornyakova L.A., Baryshnikov A.Y. et al. A soluble form of FAS/APO-1 (CD95) antigen in the serum of viral hepatitis patients // International Journal on Immunorehabilitation. - 1999. - 14. - P. 110.

46. Rothe M., Sarma V., Dixit V.M., Goeddel D.V. TRAF2-Mediated activation of NFkB by TNF receptor 2 and CD40 // Science. - 1995. - 269(5229). - P. 1424-7.

47. Sakahira H., Enari M., Nagata S. Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis // Nature. - 1998. - 391(6662). - P. 96-9.

48. Sato T., Irie S., Kitada S., Reed J.C. FAP-1: a protein tyrosine phosphatase that associates with Fas // Science. - 1995. -268(5209). - P. 411-5.

49. Scaffidi C., Fulda S., Srinivasan A. Two CD95 (APO-1/Fas) signaling pathways // EMBO J. - 1998. - 17(6). - P. 1675 87.

50. Schneider P., Bodmer J.L., Holler N. et al. Characterization of Fas (Apo-1, CD95)-Fas ligand interaction // J Biol Chem. - 1997. - 272(30). - P. 18827-33.

51. Schneider-Brachert W., Tchikov V., Neumeyer J. et al. Compartmentalization of TNF receptor 1 signaling: Internalized TNF receptosomes as death signaling vesicles // Immunity. - 2004. - 21. - P. 415-28.

52. Screaton G.R., Xu X.N., Olsen A.L. et al. LARD: A new lymphoid-specific death domain containing receptor regulated by alternative pre-mRNA splicing // Proc. Natl. Acad. Sci. USA. - 1997. - 94. - P. 4615-9.

53. Suda T., Takahashi T., Golstein P., Nagata S. Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family // Cell. - 1993. - 75(6). - P. 1169-78.

54. Takahashi T., Tanaka M., Inazawa J. et al. Human Fas ligand: Gene structure, chromosomal location and species specificity // Int. Immunol. - 1994. - 6. - P. 1567-74.

55. Tang G., Minemoto Y., Dibling B. et al. Inhibition of JNK activation through NF-kappaB target genes // Nature. - 2001. - 414. - P. 313-7.

56. Tang P., Hung M.C., Klostergaard J. Human pro-tumor necrosis factor is a homotrimer // Biochemistry. - 1996. - 35. -P. 8216-25.

57. Tartaglia L.A., Goeddel D.V., Reynolds C. et al. Stimulation of human T-cell proliferation by specific activation of the 75-kDa tumor necrosis factor receptor // Journal of Immunology. - 1993. - 151(9). - P. 4637-41.

58. Tartaglia L.A., Weber R.F., Figari I.S. et al. The two different receptors for tumor necrosis factor mediate distinct cellular responses // Proceedings of the National Academy of Sciences of the United States of America. - 1991. - 88(20). -P. 9292-6.

59. Trauth B.C., Klas C., Peters A.M. et al. Monoclonal antibody-mediated tumor regression by induction of apoptosis // Science. - 1989. - 245(4915). - P. 301-5.

60. Wajant H., Pfizenmaier K., Scheurich P. Tumor necrosis factor signaling // Cell Death Differ. - 2003. - 10. - P. 45-65.

61. Walczak H., Degli-Esposti M.A., Johnson R.S. et al. TRAIL-R2: A novel apoptosis-mediating receptor for TRAIL // EMBO J. - 1997. - 16. - P. 5386-97.

62. Wang L., Yang J.K., Kabaleeswaran V. et al. The Fas-FADD death domain complex structure reveals the basis of DISC assembly and disease mutations // Nat Struct Mol Biol. - 2010. - 17(11). - P. 1324-9.

63. Wen L., Zhuang L., Luo X., Wei P. TL1A-induced NF-kappaB activation and c-IAP2 production prevent DR3-mediated apoptosis in TF-1 cells // J. Biol. Chem. - 2003. - 278. - P. 39251-8.

64. Wiley S.R., Schooley K., Smolak P.J. et al. Identification and characterization of a new member of the TNF family that induces apoptosis // Immunity. - 1995. - 3. - P. 673-82.

65. Yanagisawa J., Takahashi M., Kanki H. The molecular interaction of Fas and FAP-1. A tripeptide blocker of human Fas interaction with FAP-1 promotes Fas-induced apoptosis // J Biol Chem. - 1997. - 272(13). - P. 8539-45.

66. Yin X.M. Signal transduction mediated by Bid, a pro-death Bcl-2 family proteins, connects the death receptor and mitochondria apoptosis pathways // Cell Res. - 2000. - 10(3). - P. 161-7.

67. Yonehara S., Ishii A., Yonehara M. A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor // J Exp Med. - 1989. - 169(5). - P. 1747-56.


Для цитирования:


Мисюрин В.А. СТРУКТУРА И СВОЙСТВА ОСНОВНЫХ РЕЦЕПТОРОВ И ЛИГАНДОВ ВНЕШНЕГО ПУТИ АПОПТОЗА. Российский биотерапевтический журнал. 2015;14(2):23-30. https://doi.org/10.17650/1726-9784-2015-14-2-23-30

For citation:


Misyurin V.A. STRUCTURE AND FUNCTIONS OF MAIN APOPTOSIS RECEPTORS AND LIGANDS. Russian Journal of Biotherapy. 2015;14(2):23-30. (In Russ.) https://doi.org/10.17650/1726-9784-2015-14-2-23-30

Просмотров: 56


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1726-9784 (Print)
ISSN 1726-9792 (Online)