Preview

Russian Journal of Biotherapy

Advanced search

Principles and approaches in the development of fluorescent hydrogels for cancer diagnosis

https://doi.org/10.17650/1726-9784-2023-22-4-17-27

Abstract

Introduction. Early sensitive and highly specific diagnosis is crucial for successful cancer therapy. The use of fluorescent hydrogels (FHG) makes it possible to develop versatile biosensors due to the increased binding capacity of biological capture and reporter molecules, sensitive fluorescence detection, and the flexibility of combining their structural and functional elements.

Aim. Analyzing the principles of designing biosensors based on FHG for the detection of cancer markers and the methodological approaches to their development, as well as summarizing and systematizing the data on the principles of detection and target signal generation used in these sensors.

Results. FHG represent 3D sensing platforms, i. e., structures that combine the reporter fluorescence function with biological capture molecules, allowing the unique optical properties of fluorescent nanocrystals at the macro level to be preserved. The porous structure of hydrogels increases the active surface area of biosensors for 3D immobilization of fluorescent labels and biological capture molecules, while preserving the structure of these molecules, which ensures specific binding of the detected molecules of the sample. This ensures a higher sensitivity compared with the traditional methods of immunoenzymatic and immunochromatographic analyses. Not only the traditionally used antibodies, but also enzymes and glycoproteins, aptamers and oligonucleotides, as well as polymers obtained by molecular imprinting, can serve as biological capture molecules, which extends the range of specifically detectable analytes.

Conclusion. The review presents examples of biosensors based on FHG intended for the detection of cancer markers and describes approaches to the preparation of FHG and immobilization of biological capture molecules, as well as principles of generation of the detected optical signal. The main advantages of fluorescent hydrogel biosensors over the classical tests used for quick diagnosis of cancer are shown.

About the Authors

P. M. Sokolov
Life Improvement by Future Technologies (LIFT) Center; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

5 Nobelya St., Skolkovo, 121205 Moscow

31 Kashirskoe Shosse, 115409 Moscow



P. S. Samokhvalov
Life Improvement by Future Technologies (LIFT) Center; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

5 Nobelya St., Skolkovo, 121205 Moscow

31 Kashirskoe Shosse, 115409 Moscow



D. A. Baranova
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

31 Kashirskoe Shosse, 115409 Moscow



A. V. Sukhanova
Université de Reims Champagne-Ardenne
France

51 rue Cognacq Jay, 51100 Reims



References

1. Hawkes N. Cancer survival data emphasise importance of early diagnosis. BMJ 2019;364:1408. DOI: 10.1136/bmj.l408

2. Crosby D., Bhatia S., Brindle K.M. et al. Early detection of cancer. Science 2022;375(6586):eaay9040. DOI: 10.1126/science.aay9040

3. Pulumati A., Pulumati A., Dwarakanath B.S. et al. Technological advancements in cancer diagnostics: Improvements and limitations. Cancer Rep (Hoboken) 2023;6(2):e1764. DOI: 10.1002/cnr2.1764

4. Sukhanova A., Ramos-Gomes F., Chames P. et al. Multiphoton deep-tissue imaging of micrometastases and disseminated cancer cells using conjugates of quantum dots and single-domain antibodies. Methods Mol Biol 2021;2350:105–23. DOI: 10.1007/978-1-0716-1593-5_8

5. Lutz A.M., Willmann J.K., Cochran F.V. et al. Cancer screening: a mathematical model relating secreted blood biomarker levels to tumor sizes. PLoS medicine 2008;5(8):e170. DOI: 10.1371/journal.pmed.0050170

6. You P.Y., Li F.C., Liu M.H., Chan Y.H. Colorimetric and fluorescent dual-mode immunoassay based on plasmon-enhanced fluorescence of polymer dots for detection of PSA in whole blood. ACS Appl Mater Interfaces 2019;11(10):9841–9. DOI: 10.1021/acsami.9b00204

7. Li Y., Huang Z.-Z., Weng Y., Tan H. Pyrophosphate ion-responsive alginate hydrogel as an effective fluorescent sensing platform for alkaline phosphatase detection. Chem Commun (Camb) 2019;55(76):11450–3. DOI: 10.1039/C9CC05223B

8. Guglielmi M., Martucci A. Semiconductor quantum dot-doped sol–gel materials. In: Martucci A., Santos L., Estefanía Rojas Hernández R., Almeida R., eds. Sol–gel derived optical and photonic materials. Cambridge: Woodhead Publishing, 2020. P. 209–226.

9. Richter A., Paschew G., Klatt S. et al. Review on hydrogel-based pH sensors and microsensors. Sensors (Basel) 2008;8(1):561–81. DOI: 10.3390/s8010561

10. Zhang Z., He C., Chen X. Hydrogels based on pH-responsive reversible carbon–nitrogen double-bond linkages for biomedical applications. Mat Chem Front 2018;2:1765–78. DOI: 10.1039/C8QM00317C

11. Hashim H., Maruyama H., Akita Y. et al. Hydrogel fluorescence microsensor with fluorescence recovery for prolonged stable temperature measurements. Sensors (Basel) 2019;19(23):5247. DOI: 10.3390/s19235247

12. Jia Z., Sukker I., Müller M., Schönherr H. Selective discrimination of key enzymes of pathogenic and nonpathogenic bacteria on autonomously reporting shape-encoded hydrogel patterns. ACS Appl Mater Interfaces 2018;10(6):5175–84. DOI: 10.1021/acsami.7b15147

13. Liang Z., Zhang J., Wu C. et al. Flexible and self-healing electrochemical hydrogel sensor with high efficiency toward glucose monitoring. Biosens Bioelectron 2020;155:112105. DOI: 10.1016/j.bios.2020.112105

14. Chen Z., Chen Y., Hedenqvist M.S. et al. Multifunctional conductive hydrogels and their applications as smart wearable devices. J Mater Chem B 2021;9(11):2561–83. DOI: 10.1039/D0TB02929G

15. Larsson A., Ekblad T., Andersson O., Liedberg B. Photografted poly(ethylene glycol) matrix for affinity interaction studies. Biomacromolecules 2007;8(1):287–95. DOI: 10.1021/bm060685g

16. Jung I.Y., Kim J.S., Choi B.R. et al. Hydrogel based biosensors for in vitro diagnostics of biochemicals, proteins, and genes. Adv Healthc Mater 2017;6(12):1601475. DOI: 10.1002/adhm.201601475

17. Gao Y., Wolf L.K., Georgiadis R.M. Secondary structure effects on DNA hybridization kinetics: A solution versus surface comparison. Nucleic Acids Res 2006;34(11):3370–7. DOI: 10.1093/nar/gkl422

18. Welch N.G., Scoble J.A., Muir B.W., Pigram P.J. Orientation and characterization of immobilized antibodies for improved immunoassays (Review). Biointerphases 2017;12(2):02D301. DOI: 10.1116/1.4978435

19. Feng B., Huang S., Ge F. et al. 3D antibody immobilization on a planar matrix surface. Biosens Bioelectron 2011;28(1):91–6. DOI: 10.1016/j.bios.2011.07.003

20. Su X., Hao D., Xu X. et al. Hydrophilic/hydrophobic heterogeneity anti-biofouling hydrogels with well-regulated rehydration. ACS Appl Mater Interfaces 2020;12(22):25316–23. DOI: 10.1021/acsami.0c05406

21. Missirlis D., Baños M., Lussier F., Spatz J.P. Facile and versatile method for micropatterning poly(acrylamide) hydrogels using photocleavable comonomers. ACS Appl Mater Interfaces 2022;14(3):3643–52. DOI: 10.1021/acsami.1c17901

22. Xia Y., Xue B., Qin M. et al. Printable fluorescent hydrogels based on Self-assembling peptides. Sci Rep 2017;7(1):9691. DOI: 10.1038/s41598-017-10162-y

23. Kar T., Patra N. Pyrene-based fluorescent supramolecular hydrogel: Scaffold for nanoparticle synthesis. J Phys Org Chem 2019;33:e4026. DOI: 10.1002/poc.4026

24. Wu Y., Jin X., Ashrafzadeh Afshar E. et al. Simple turn-off fluorescence sensor for determination of raloxifene using gold nanoparticles stabilized by chitosan hydrogel. Chemosphere 2022;305:135392. DOI: 10.1016/j.chemosphere.2022.135392

25. Liu C., Li Q., Wang H. et al. Quantum dots-loaded self-healing gels for versatile fluorescent assembly. Nanomaterials (Basel) 2022;12(3):452. DOI: 10.3390/nano12030452

26. Pisanic T.R. 2nd, Zhang Y., Wang T.H. Quantum dots in diagnostics and detection: principles and paradigms. Analyst 2014;139(12):2968–81. DOI: 10.1039/c4an00294f

27. Linkov P.A., Vokhmintcev K.V., Samokhvalov P.S., Nabiev I.R. Ultrasmall quantum dots for fluorescent bioimaging in vivo and in vitro. Opt Spectrosc 2017;122(1):8–11. DOI: 10.1134/S0030400X17010143

28. Kandi D., Mansingh S., Behera A., ParidaK. Calculation of relative fluorescence quantum yield and Urbach energy of colloidal CdS QDs in various easily accessible solvents. J Lumin 2021;231:117792. DOI: 10.1016/j.jlumin.2020.117792

29. Neo D.C.J., Goh W.P., Lau H.H., Shanmugam J. CuInS2 quantum dots with thick ZnSexS1-x shells for a luminescent solar concentrator. ACS Appl Nano Mater 2020;3:6489–96. DOI: 10.1021/acsanm.0c00958

30. Dey S.C., Nath S.S. Size-dependent fluorescence in CdSe quantum dots. Emer Mat Res 2012;1(3):117–20. DOI: 10.1680/emr.11.00004

31. Montón H., Nogués C., Rossinyol E. et al. QDs versus Alexa: reality of promising tools for immunocytochemistry. J Nano-biotechnology 2009;7:4. DOI: 10.1186/1477-3155-7-4

32. Benson K., Ghimire A., Pattammattel A., Kumar C.V. Protein biophosphors: Biodegradable, multifunctional, protein-based hydrogel for white emission, sensing, and pH detection. Adv Funct Mater 2017;27:1702955. DOI: 10.1002/adfm.201702955

33. Li C.Y., Zheng S.Y., Du C. et al. Carbon dot/poly(methylacrylic acid) nanocomposite hydrogels with high toughness and strong fluorescence. ACS Appl Polym Mater 2020;2:1043–52. DOI: 10.1021/acsapm.9b00971

34. Xu J., Zhang Y., Zhu W. et al. Synthesis of Polymeric nanocomposite hydrogels containing the pendant ZnS nanoparticles: Approach to higher refractive index optical polymeric nanocomposites. Macromol 2018;51(Is.7):2672–81. DOI: 10.1021/acs.macromol.7b02315

35. Yang T., Li Q., Wen W. et al. Cadmium sulfide quantum dots/ poly(acrylic acid-co-acrylic amide) composite hydrogel synthesized by gamma irradiation. Rad Phys Chem 2018;145:130–4. DOI: 10.1016/j.radphyschem.2017.10.012

36. Zhang H., Wang X., Liao Q. et al. Embedding perovskite nanocrystals into a polymer matrix for tunable luminescence probes in cell imaging. Advan Func Mat 2017;27(7):1604382. DOI: 10.1002/adfm.201604382

37. Gaponik N., Wolf A., Marx R. et al. Three-dimensional self-assembly of thiol-capped CdTe nanocrystals: Gels and aerogels as building blocks for nanotechnology. Advan Mat 2008;20(Is.22):4257–62. DOI: 10.1002/adma.200702986

38. Hörner M., Becker J., Bohnert R. et al. A photoreceptor-based hydrogel with red light-responsive reversible sol-gel transition as transient cellular matrix. Adv Mat Tech n/a:2300195. DOI: 10.1002/admt.202300195

39. Bhattacharya S., Nandi S., Jelinek R. Carbon-dot–hydrogel for enzyme-mediated bacterial detection. RSC Advances 2017;7:588–94. DOI: 10.1039/C6RA25148J

40. Lee T., Teng T.Z.J., Shelat V.G. Carbohydrate antigen 19-9 – tumor marker: Past, present, and future. World J Gastrointest Surg 2020;12(12):468–90. DOI: 10.4240/wjgs.v12.i12.468

41. Piloto A.M.L., Ribeiro D.S.M., Rodrigues S.S.M. et al. Cellulose-based hydrogel on quantum dots with molecularly imprinted polymers for the detection of CA19-9 protein cancer biomarker. Mikrochim Acta 2022;189(4):134. DOI: 10.1007/s00604-022-05230-8

42. Ahmadi-Sangachin E., Mohammadnejad J., Hosseini M. Fluorescence Self-assembled DNA hydrogel for the determination of prostate specific antigen by aggregation induced emission. Spectrochim Acta A Mol Biomol Spectrosc 2023:303:123234. DOI: 10.2139/ssrn.4313053

43. Bautista-Sánchez D., Arriaga-Canon C., Pedroza-Torres A. et al. The promising role of miR-21 as a cancer biomarker and its importance in RNA-based therapeutics. Mol Ther Nucleic Acids 2020;20:409–20. DOI: 10.1016/j.omtn.2020.03.003

44. Mohammadi S., Mohammadi S., Salimi A. A 3D hydrogel based on chitosan and carbon dots for sensitive fluorescence detection of microRNA-21 in breast cancer cells. Talanta 2021;224:121895. DOI: 10.1016/j.talanta.2020.121895

45. Gao Y., Feng B., Han S. et al. The roles of microRNA-141 in human cancers: From diagnosis to treatment. Cell Physiol Biochem 2016;38(2):427–48. DOI: 10.1159/000438641

46. Li C., Li H., Ge J., Jie G. Versatile fluorescence detection of microRNA based on novel DNA hydrogel-amplified signal probes coupled with DNA walker amplification. Chem Commun (Camb) 2019;55(27):3919–22. DOI: 10.1039/C9CC00565J

47. Gong X., Zhou W., Chai Y. et al. MicroRNA-induced cascaded and catalytic self-assembly of DNA nanostructures for enzyme-free and sensitive fluorescence detection of microRNA from tumor cells. Chem Commun (Camb) 2016;52(12):2501–4. DOI: 10.1039/C5CC08861E

48. Zhang G., Zhou S., Yan G. et al. Quantum dot-crosslinked light-guiding hydrogels for sensing folate receptor-overexpressed cancer cells. Sens Actuators B Chem 2021;349:130815. DOI: 10.1016/j.snb.2021.130815

49. Bolli A., Galluzzo P., Ascenzi P. et al. Laccase treatment impairs bisphenol A-induced cancer cell proliferation affecting estrogen receptor alpha-dependent rapid signals. IUBMB life 2008;60(12):843–52. DOI: 10.1002/iub.130

50. Ruiz-Palomero C., Benítez-Martínez S., Soriano M.L., Valcárcel M. Fluorescent nanocellulosic hydrogels based on graphene quantum dots for sensing laccase. Anal Chim Acta 2017;974:93–9. DOI: 10.1016/j.aca.2017.04.018

51. Tse R.T.-H., Wong C.Y.-P., Chiu P.K.-F., Ng C.F. The potential role of spermine and its acetylated derivative in human malignancies. Int J Mol Sci 2022;23(3):1258. DOI: 10.3390/ijms23031258

52. Nair R.R., Debnath S., Das S. et al. A highly selective turn-on biosensor for measuring spermine/spermidine in human urine and blood. ACS Appl Bio Mater 2019;2(6):2374–87. DOI: 10.1021/acsabm.9b00084

53. Traverso N., Ricciarelli R., Nitti M. et al. Role of glutathione in cancer progression and chemoresistance. Oxid Med Cell Longev 2013;2013:972913. DOI: 10.1155/2013/972913

54. Wu R., Ge H., Liu C. et al. A novel thermometer-type hydrogel senor for glutathione detection. Talanta 2019;196:191–6. DOI: 10.1016/j.talanta.2018.12.020

55. Grant C.E., Flis A.L., Ryan B.M. Understanding the role of dopamine in cancer: Past, present and future. Carcinogenesis 2022;43(6):517–27. DOI: 10.1093/carcin/bgac045

56. Yuan J., Wen D., Gaponik N., Eychmüller A. Enzyme-encapsulating quantum dot hydrogels and xerogels as biosensors: Multifunctional platforms for both biocatalysis and fluorescent probing. Angew Chem Int Ed Engl 2013;52(3):976–9. DOI: 10.1002/anie.201205791

57. Fini M.A., Elias A., Johnson R.J., Wright R.M. Contribution of uric acid to cancer risk, recurrence, and mortality. Clin Transl Med 2012;1(1):16. DOI: 10.1186/2001-1326-1-16

58. Azmi N.E., Rashid A.H.A., Abdullah J. et al. Fluorescence biosensor based on encapsulated quantum dots/enzymes/sol-gel for non-invasive detection of uric acid. J Luminescence 2018;202:309–15. DOI: 10.1016/j.jlumin.2018.05.075

59. Wang M., Zhu J., Lubman D.M., Gao C. Aberrant glycosylation and cancer biomarker discovery: a promising and thorny journey. Clin Chem Lab Med 2019;57(4):407–16. DOI: 10.1515/cclm-2018-0379

60. Koshi Y., Nakata E., Yamane H., Hamachi I. A fluorescent lectin array using supramolecular hydrogel for simple detection and pattern profiling for various glycoconjugates. J Am Chem Soc 2006;128(32):10413–22. DOI: 10.1021/ja0613963


Review

For citations:


Sokolov P.M., Samokhvalov P.S., Baranova D.A., Sukhanova A.V. Principles and approaches in the development of fluorescent hydrogels for cancer diagnosis. Russian Journal of Biotherapy. 2023;22(4):17-27. (In Russ.) https://doi.org/10.17650/1726-9784-2023-22-4-17-27

Views: 292


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1726-9784 (Print)
ISSN 1726-9792 (Online)