Сывороточные белки как предикторы развития химиоиндуцированной полинейропатии
https://doi.org/10.17650/1726-9784-2024-23-3-18-25
Аннотация
Введение. Развитие полинейропатии на фоне применения цитотоксических препаратов является частым неврологическим осложнением, которое может значительно ухудшить качество жизни пациентов и ограничить возможности использования химиотерапии. Трудности в прогнозировании проявлений и тяжести неврологических осложнений обусловлены множеством факторов, включая индивидуальные особенности пациента, тип и дозу применяемого препарата, а также наличие сопутствующих заболеваний. В последние годы внимание исследователей сосредоточилось на выявлении сывороточных биомаркеров, которые могут помочь в ранней диагностике и мониторинге химиоиндуцированной полинейропатии. Понимание их роли в развитии полинейропатииможетоткрытьновыевозможностидляразработкистратегийпрофилактикиилеченияданногоосложнения, что, в свою очередь, может повысить эффективность лечения и улучшить качество жизни пациентов. Данный обзор посвящен биомаркерам и их клиническому значению в развитии химиоиндуцированной полинейропатии.
Цель исследования – анализ и обобщение современных представлений о сывороточных биологических маркерах химиоиндуцированной полинейропатии на основании данных литературы.
Материалы и методы. Поиск литературы проводили с использованием баз данных PubMed и Medline.В анализ включали систематические обзоры, публикации оригинальных исследований и метаанализы в период с 2000 по 2023 г.
Результаты. За последние десятилетия появилось новое понимание роли биомаркеров в развитии химиоиндуцированной полинейропатии, среди которых наиболее специфичными являются нейрофиламенты. Использование доступных и чувствительных методик измерения концентрации биомаркеров позволит на ранней стадии прогнозировать и предотвращать развитие данного осложнения.
Заключение.Анализданныхлитературыпоказалвысокуюзначимостьбиомаркеровприповрежденииструктур периферической нервной системы, что может в ближайшем будущем отразиться на тактике ведения онкологических пациентов и, в свою очередь, улучшит качество их жизни.
Об авторах
О. А. ТихоноваРоссия
Ольга Алексеевна Тихонова
236041 Калининград, ул. А. Невского, 14
Е. С. Дружинина
Россия
117513 Москва, ул. Островитянова, 1A
О. П. Тучина
Россия
236041 Калининград, ул. А. Невского, 14
Д. С. Дружинин
Россия
150000 Ярославль, ул. Революционная, 6
С. А. Докторова
Россия
236041 Калининград, ул. А. Невского, 14
Список литературы
1. Zedan A.H., Vilholm O.J. Chemotherapy-induced polyneuropathy: major agents and assessment by questionnaires. Basic Clin Pharmacol Toxicol 2014;115(2):193–200. DOI:10.1111/bcpt.12262
2. Seretny M., Currie G.L., Sena E.S. et al. Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: A systematic review and meta-analysis. Pain 2014;155(12):2461–70. DOI: 10.1016/j.pain.2014.09.020
3. Cavaletti G., Alberti P., Frigeni B. et al. Chemotherapy-induced neuropathy. Curr Treat Options Neurol 2011;13(2):180–90. DOI:10.1007/s11940-010-0108-3
4. Choi J., Kong K., Mozaffar T., Holcombe R.F. Delayed oxaliplatin-associated neurotoxicity following adjuvant chemotherapy for stage III colon cancer. Anticancer Drugs 2006;17(1):103–5. DOI: 10.1097/01.cad.0000185185.64980.70
5. Quasthoff S., Hartung H.P. Chemotherapy-induced peripheral neuropathy. J Neurol 2002;249(1):9–17. DOI: 10.1007/pl00007853
6. Colvin L.A. Chemotherapy-induced peripheral neuropathy (CIPN): where are we now? Pain 2019;160:S1. DOI: 10.1097/j.pain.0000000000001540
7. Loprinzi C.L., Lacchetti C., Bleeker J. et al. Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers: ASCO Guideline Update. J Clin Oncol 2020;38(28):3325–48. DOI:10.1200/JCO.20.01399
8. Hertz D.L., Childs D.S., Park S.B. et al. Patient-centric decision framework for treatment alterations in patients with chemotherapy-induced peripheral neuropathy (CIPN). Cancer Treat Rev 2021;99:102241. DOI: 10.1016/j.ctrv.2021.102241
9. Delaby C., Alcolea D., Carmona-Iragui M. et al. Differential levels of neurofilament light protein in cerebrospinal fluid in patients with a wide range of neurodegenerative disorders. Sci Rep 2020;10(1):9161. DOI: 10.1038/s41598-020-66090-x
10. Kim S-H., Choi M.K., Park N.Y. et al. Serum neurofilament light chain levels as a biomarker of neuroaxonal injury and severity of oxaliplatin-induced peripheral neuropathy. Sci Rep 2020;10(1):7995. DOI:10.1038/s41598-020-64511-5
11. Huehnchen P., Schinke C., Bangemann N. et al. Neurofilament proteins as a potential biomarker in chemotherapy-induced polyneuropathy. JCI Insight 2022;7(6):e154395. DOI: 10.1172/jci.insight.154395
12. Kim S.H., Kim K.H., Hyun J.W. et al. Blood neurofilament light chain as a biomarker for monitoring and predicting paclitaxelinduced peripheral neuropathy in patients with gynecological cancers. Front Oncol 2022;12:942960. DOI: 10.3389/fonc.2022.942960
13. Meregalli C., Fumagalli G., Alberti P. et al. Neurofilament light chain: a specific serum biomarker of axonal damage severity in rat models of chemotherapy-induced peripheral neurotoxicity. Arch Toxicol 2020;94(7):2517–22. DOI:10.1007/s00204-020-02755-w
14. Burgess B.L., Cho E., Honigberg L. Neurofilament light as a predictive biomarker of unresolved chemotherapy-induced peripheral neuropathy in subjects receiving paclitaxel and carboplatin. Sci Rep 2022;12(1):15593. DOI: 10.1038/s41598-022-18716-5
15. Romano R., Del Fiore V.S., Bucci C. Role of the intermediate filament protein peripherin in health and disease. Int J Mol Sci 2022;23(23):15416. DOI:10.3390/ijms232315416
16. Yuan A., Sasaki T., Kumar A. et al. Peripherin is a subunit of peripheral nerve neurofilaments: implications for differential vulnerability of CNS and peripheral nervous system axons. J Neurosci 2012;32(25):8501–8. DOI: 10.1523/JNEUROSCI.1081-12.2012
17. Keddie S., Smyth D., Keh R.Y.S. et al. Peripherin is a biomarker of axonal damage in peripheral nervous system disease. Brain 2023;146(11):4562–73. DOI:10.1093/brain/awad234
18. Meregalli C., Bonomo R., Cavaletti G., Carozzi V.A. Blood molecular biomarkers for chemotherapy-induced peripheral neuropathy: from preclinical models to clinical practice. Neurosci Lett 2021;749:135739. DOI: 10.1016/j.neulet.2021.135739
19. Youk J., Kim Y.S., Lim J.A. et al. Depletion of nerve growth factor in chemotherapy-induced peripheral neuropathy associated with hematologic malignancies. PLoS One 2017;12(8):e0183491. DOI: 10.1371/journal.pone.0183491
20. Omar N.A., Kumar J., Teoh S.L. Neurotrophin-3 and neurotrophin-4: The unsung heroes that lies behind the meninges. Neuropeptides 2022;92:102226. DOI: 10.1016/j.npep.2022.102226
21. Aloe L, Rocco ML, Bianchi P, Manni L. Nerve growth factor: from the early discoveries to the potential clinical use. J Transl Med 2012;10:239. DOI: 10.1186/1479-5876-10-239
22. De Santis S., Pace A., Bove L. et al. Patients treated with antitumor drugs displaying neurological deficits are characterized by a low circulating level of nerve growth factor. Clin Cancer Res 2000;6(1):90–5. PMID: 10656436
23. Velasco R., Navarro X., Gil-Gil M. et al. Neuropathic pain and nerve growth factor in chemotherapy-induced peripheral neuropathy: prospective clinical-pathological study. J Pain Symptom Manage 2017;54(6):815–25. DOI: 10.1016/j.jpainsymman.2017.04.021
24. Wang X., Ratnam J., Zou B. et al. TrkB signaling is required for both the induction and maintenance of tissue and nerve injury-induced persistent pain. J Neurosci 2009;29(17):5508–15. DOI: 10.1523/JNEUROSCI.4288-08.2009
25. Szudy-Szczyrek A., Mlak R., Bury-Kamińska M. et al. Serum brain-derived neurotrophic factor (BDNF) concentration predicts polyneuropathy and overall survival in multiple myeloma patients. Br J Haematol 2020;191(1):77–89. DOI: 10.1111/bjh.16862
26. Azoulay D., Giryes S., Nasser R. et al. Prediction of chemotherapy-induced peripheral neuropathy in patients with lymphoma and myeloma: the roles of brain-derived neurotropic factor protein levels and A gene polymorphism. J Clin Neurol 2019;15(4):511–6. DOI: 10.3988/jcn.2019.15.4.511
27. Tonyan S., Pospelova M., Krasnikova V. et al. Neurotrophin-3 (NT-3) as a potential biomarker of the peripheral nervous system damage following breast cancer treatment. Pathophysiology 2023;30(2):110–22. DOI: 10.3390/pathophysiology30020010
28. Wilson-Gerwing T.D., Dmyterko M.V., Zochodne D.W. et al. Neurotrophin-3 suppresses thermal hyperalgesia associated with neuropathic pain and attenuates transient receptor potential vanilloid receptor-1 expression in adult sensory neurons. J Neurosci 2005;25(3):758–67. DOI: 10.1523/JNEUROSCI.3909-04.2005
29. Hernández-Echeagaray E. Neurotrophin-3 modulates synaptic transmission. Vitam Horm 2020;114:71–89. DOI: 10.1016/bs.vh.2020.04.008
30. Gandhi R., Ryals J.M., Wright D.E. Neurotrophin-3 reverses chronic mechanical hyperalgesia induced by intramuscular acid injection. J Neurosci 2004;24(42):9405–13. DOI: 10.1523/JNEUROSCI.0899-04.2004
31. Wilson-Gerwing T.D., Stucky C.L., McComb G.W., Verge V.M. Neurotrophin-3 significantly reduces sodium channel expression linked to neuropathic pain states. Exp Neurol 2008;213(2):303–14. DOI: 10.1016/j.expneurol.2008.06.002
32. Sahenk Z., Nagaraja H.N., McCracken B.S. et al. NT-3 promotes nerve regeneration and sensory improvement in CMT1A mouse models and in patients. Neurology 2005;65(5):681–9. DOI: 10.1212/01.wnl.0000171978.70849.c5
33. Chaudhry V., Giuliani M., Petty B.G. et al. Tolerability of recombinant-methionyl human neurotrophin-3 (r-metHuNT3) in healthy subjects. Muscle Nerve 2000;23(2):189–92. DOI: 10.1002/(sici)1097-4598(200002)23:23.0.co;2-8
34. Xu X., Song L., Li Y. et al. Neurotrophin-3 promotes peripheral nerve regeneration by maintaining a repair state of Schwann cells after chronic denervation via the TrkC/ ERK/c-Jun pathway. J Transl Med 2023;21(1):733. DOI:10.1186/s12967-023-04609-2
35. Srejovic I., Selakovic D., Jovicic N. et al. Galectin-3: roles in neurodevelopment, neuroinflammation, and behavior. Biomolecules 2020;10(5):798. DOI:10.3390/biom10050798
36. Burguillos M.A., Svensson M., Schulte T. et al. Microgliasecreted galectin-3 acts as a toll-like receptor 4 ligand and contributes to microglial activation. Cell Rep 2015;10(9):1626–38. DOI: 10.1016/j.celrep.2015.02.012
37. Ma Z., Han Q., Wang X. et al. Galectin-3 inhibition is associated with neuropathic pain attenuation after peripheral nerve injury. PLoS One 2016;11(2):e0148792. DOI: 10.1371/journal.pone.0148792
38. Koyanagi M., Imai S., Matsumoto M. et al. Pronociceptive roles of Schwann cell-derived galectin-3 in taxane-induced peripheral neuropathy. Cancer Res 2021;81(8):2207–19. DOI: 10.1158/0008-5472.CAN-20-2799
39. Sommer C., Kress M. Recent findings on how proinflammatory cytokines cause pain: peripheral mechanisms in inflammatory and neuropathic hyperalgesia. Neurosci Lett 2004;361(1-3):184–7. DOI: 10.1016/j.neulet.2003.12.007
40. Tofaris G.K., Patterson P.H., Jessen K.R., Mirsky R. Denervated Schwann cells attract macrophages by secretion of leukemia inhibitory factor (LIF) and monocyte chemoattractant protein-1 in a process regulated by interleukin-6 and LIF. J Neurosci 2002;22(15):6696–703. DOI: 10.1523/JNEUROSCI.22-15-06696.2002
41. Wang X.M., Lehky T.J. Discovering cytokines as targets for chemotherapy-induced painful peripheral neuropathy. Cytokine 2012;59(1):3–9. DOI: 10.1016/j.cyto.2012.03.027
42. Illias A.M., Gist A.C., Zhang H. et al. Chemokine CCL2 and its receptor CCR2 in the dorsal root ganglion contribute to oxaliplatin-induced mechanical hypersensitivity. Pain 2018; 159(7):1308–16. DOI: 10.1097/j.pain.0000000000001212
43. Schäfers M., Brinkhoff J., Neukirchen S. et al. Combined epineurial therapy with neutralizing antibodies to tumor necrosis factor-alpha and interleukin-1 receptor has an additive effect in reducing neuropathic pain in mice. Neurosci Lett 2001;310(2-3): 113–6. DOI: 10.1016/s0304-3940(01)02077-8
44. Liu C.C., Lu N., Cui Y. et al. Prevention of paclitaxel-induced allodynia by minocycline: effect on loss of peripheral nerve fibers and infiltration of macrophages in rats. Mol Pain 2010;6:76. DOI: 10.1016/s0304-3940(01)02077-8
45. Boyette-Davis J., Dougherty P.M. Protection against oxaliplatininduced mechanical hyperalgesia and intraepidermal nerve fiber loss by minocycline. Exp Neurol 2011;229(2):353–7. DOI: 10.1016/j.expneurol.2011.02.019
46. Castello L.M., Raineri D., Salmi L. et al. Osteopontin at the crossroads of inflammation and tumor progression. Mediators Inflamm 2017;2017:4049098. DOI: 10.1155/2017/4049098
47. Pizzamiglio C., Ripellino P., Prandi P. et al. Nerve conduction, circulating osteopontin and taxane-induced neuropathy in breast cancer patients. Neurophysiol Clin 2020;50(1):47–54. DOI: 10.1016/j.neucli.2019.12.001
48. Lund S.A., Wilson C.L., Raines E.W. et al. Osteopontin mediates macrophage chemotaxis via α4 and α9 integrins and survival via the α4 integrin. J Cell Biochem 2013;114(5):1194–202. DOI:10.1002/jcb.24462
49. Hu S., Huang K.M., Adams E.J. et al. Recent developments of novel pharmacologic therapeutics for prevention of chemotherapy-induced peripheral neuropathy. Clin Cancer Res 2019;25(21):6295–301. DOI: 10.1158/1078-0432.CCR-18-2152
Рецензия
Для цитирования:
Тихонова О.А., Дружинина Е.С., Тучина О.П., Дружинин Д.С., Докторова С.А. Сывороточные белки как предикторы развития химиоиндуцированной полинейропатии. Российский биотерапевтический журнал. 2024;23(3):18-25. https://doi.org/10.17650/1726-9784-2024-23-3-18-25
For citation:
Tikhonova O.A., Druzhininа E.S., Tuchina O.P., Druzhinin D.S., Doktorova S.A. Serum proteins as predictors of the development of chemotherapy-induced peripheral neuropathy. Russian Journal of Biotherapy. 2024;23(3):18-25. (In Russ.) https://doi.org/10.17650/1726-9784-2024-23-3-18-25