The importance of the level of T-cell receptor excision circles and κ-deletion B-cell receptor excision circles in the effectiveness of therapy for metastatic ovarian cancer
https://doi.org/10.17650/1726-9784-2025-24-4-31-38
Abstract
Background. Antigen load, expression of programmed cell death ligand 1 and T-cell receptors play a key role in the formation of specific antitumor immunity. The marker of the diversity of the repertoire of receptors of immunocompetent cells to various antigens are T-cell receptor excision circles (TREC) and the κ-deletion B-cell receptor excision circles (KREC), which are extrachromosomal DNA structures.
Aim. To evaluate the effect of the diversity of TREC and KREC on the effectiveness of olaparib therapy for generalized ovarian cancer.
Materials and methods. The study included 40 patients undergoing treatment at the Republican Clinical Oncological Dispensary (RCOD) of the Ministry of Health of the Republic of Bashkortostan for ovarian cancer. The local ethics committee of RCOD approved on July 21, 2022 the protocol “IO-001” of a single-center nonrandomized open clinical trial entitled “Determination of TREC and KREC in patients with malignant neoplasms of various localizations”. All patients were prescribed olaparib therapy (international non-proprietary name). To identify mutations in genes associated with HRD (homologous recombination deficiency), next-generation sequencing by allele-specific polymerase chain reaction was used. Before the start of therapy, the level of TREC and KREC was assessed.
Results. Before the start of therapy in the general population, the median TREC was 9.6 copies / 105 cells, the median KREC was 183.8 copies / 105 cells. The minimum and maximum TREC levels were 0.07 copies / 105 cells and 215 copies / 105 cells, respectively. The minimum and maximum KREC levels were 2.8 copies / 105 cells and 1559.42 copies / 105 cells, respectively. In the group of patients with disease progression, the level of TREC was low. According to the results of the study, disease progression was predicted at a TREC value <13.23 copies / 105 cells. The obtained results indicate a significantly low level of KREC before the start of therapy in patients who progressed during therapy.
Conclusion. The prognostic role of TREC and KREC has been determined. Further research will allow us to take into account changes in TREC and KREC indicators in dynamics and use the prognostic value of these changes in the treatment of ovarian cancer. Threshold levels of TREC (13.23 copies / 105 cells) and KREC (251.04 copies / 105 cells) were detected, below which disease progression was observed.
Keywords
About the Authors
A. V. SultanbaevRussian Federation
Alexander V. Sultanbaev
73 / 1 Oktyabrya Avenue, 450054, Ufa
3 Lenina St., 450008 Ufa
106 Pervomaiskaya St., 620078 Ekaterinburg
I. A. Tuzankina
Russian Federation
Irina A. Tuzankina
106 Pervomaiskaya St., 620078 Ekaterinburg
32 Serafima Deryabina St., 620085 Ekaterinburg
K. V. Menshikov
Russian Federation
Konstantin V. Menshikov
73 / 1 Oktyabrya Avenue, 450054, Ufa
3 Lenina St., 450008 Ufa
A. F. Nasretdinov
Russian Federation
Ainur F. Nasretdinov
73 / 1 Oktyabrya Avenue, 450054, Ufa
N. I. Sultanbaeva
Russian Federation
Nadezhda I. Sultanbaeva
73 / 1 Oktyabrya Avenue, 450054, Ufa
Sh. I. Musin
Russian Federation
Shamil I. Musin
73 / 1 Oktyabrya Avenue, 450054, Ufa
A. A. Izmailov
Russian Federation
Adel A. Izmailov
73 / 1 Oktyabrya Avenue, 450054, Ufa
3 Lenina St., 450008 Ufa
M. V. Sultanbaev
Russian Federation
Mikhail V. Sultanbaev
3 Lenina St., 450008 Ufa
A. A. Izmailova
Russian Federation
Angelina A. Izmailova
build. 1, 6 Pogodinskaya St., 119121 Moscow
E. A. Troshenkov
Russian Federation
Evgeniy A. Troshenkov
build. 1, 6 Pogodinskaya St., 119121 Moscow
D. A. Kudlay
Russian Federation
Dmitry A. Kudlay
3 Lenina St., 450008 Ufa
build. 2, 8 Trubetskaya St., 119048 Moscow
24 Kashirskoe Shosse, 115522 Moscow
References
1. Sambasivan S. Epithelial ovarian cancer: review article. Cancer Treat Res Commun 2022;33:100629. DOI: 10.1016/j.ctarc.2022.100629
2. Ripperger T., Gadzicki D., Meindl A., Schlegelberger B. Breast cancer susceptibility: current knowledge and implications for genetic counselling. Eur J Hum Genet 2009;17(6):722–31. DOI: 10.1038/ejhg.2008.212
3. Соколенко А.П., Иевлева А.Г., Митюшкина Н.В. и др. Синдром наследственного рака молочной железы и яичников в России. Acta Naturae 2010;2(2):31–5.
4. Sokolenko A.P., Iyevleva A.G., Mitiushkina N.V. et al. Hereditary breast-ovarian cancer syndrome in Russia. Acta Naturae 2010;2(2):31–5.
5. Seidel J.A., Otsuka A., Kabashima K. Anti-PD-1 and anti-CTLA-4 therapies in cancer: mechanisms of action, efficacy, and limitations. Front Oncol 2018;8:86. DOI: 10.3389/fonc.2018.00086
6. Keenan T.E., Burke K.P., Van Allen E.M. Genomic correlates of response to immune checkpoint blockade. Nat Med 2019;25(3):389–402. DOI: 10.1038/s41591-019-0382-x
7. Meléndez B., Van Campenhout C., Rorive S. et al. Methods of measurement for tumor mutational burden in tumor tissue. Transl Lung Cancer Res 2018;7(6):661–7. DOI: 10.21037/tlcr.2018.08.02
8. Choucair K., Morand S., Stanbery L. et al. TMB: a promising immune-response biomarker, and potential spearhead in advancing targeted therapy trials. Cancer Gene Ther 2020;27(12):841–53. DOI: 10.1038/s41417-020-0174-y
9. Yarchoan M., Hopkins A., Jaffee E.M. Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med 2017;377(25):2500–1. DOI: 10.1056/NEJMc1713444
10. Yarchoan M., Albacker L.A., Hopkins A.C. et al. PD-L1 expression and tumor mutational burden are independent biomarkers in most cancers. JCI Insight 2019;4(6):e126908. DOI: 10.1172/jci.insight.126908
11. Hellmann M.D., Callahan M.K., Awad M.M. et al. Tumor mutational burden and efficacy of nivolumab monotherapy and in combination with ipilimumab in small-cell lung cancer. Cancer Cell 2018;33(5):853–61.e4. DOI: 10.1016/j.ccell.2018.04.001
12. Hellmann M.D., Nathanson T., Rizvi H. et al. Genomic features of response to combination immunotherapy in patients with advanced non-small-cell lung cancer. Cancer Cell 2018;33(5):843–52.e4. DOI: 10.1016/j.ccell.2018.03.018
13. Rizvi H., Sanchez-Vega F., La K. et al. Molecular determinants of response to anti-programmed cell death (PD)-1 and antiprogrammed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J Clin Oncol 2018;36(7):633–41. DOI: 10.1200/JCO.2017.75.3384
14. Rizvi N.A., Hellmann M.D., Snyder A. et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 2015;348(6230):124–8. DOI: 10.1126/science.aaa1348
15. Fan S., Gao X., Qin Q. et al. Association between tumor mutation burden and immune infiltration in ovarian cancer. Int Immunopharmacol 2020;89(Pt A):107126. DOI: 10.1016/j.intimp.2020.107126
16. Cristescu R., Mogg R., Ayers M. et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science 2018;362(6411):eaar3593. DOI: 10.1126/science.aar3593
17. Park J., Lee J.Y., Kim S. How to use immune checkpoint inhibitor in ovarian cancer? J Gynecol Oncol 2019;30(5):e105. DOI: 10.3802/jgo.2019.30.e105
18. Morse C.B., Elvin J.A., Gay L.M., Liao J.B. Elevated tumor mutational burden and prolonged clinical response to anti-PD-L1 antibody in platinum-resistant recurrent ovarian cancer. Gynecol Oncol Rep 2017;21:78–80. DOI: 10.1016/j.gore.2017.06.013
19. Konstantinopoulos P.A., Ceccaldi R., Shapiro G.I., D’Andrea A.D. Homologous recombination deficiency: exploiting the fundamental vulnerability of ovarian cancer. Cancer Discov 2015;5(11):1137–54. DOI: 10.1158/2159-8290.CD-15-0714
20. Frey M.K., Pothuri B. Homologous recombination deficiency (HRD) testing in ovarian cancer clinical practice: a review of the literature. Gynecol Oncol Res Pract 2017;4:4. DOI: 10.1186/s40661-017-0039-8
21. Aliyeva T., Aktas B.Y., Gundogdu F. et al. The predictive role of PD-L1 expression and CD8 + TIL levels in determining the neoadjuvant chemotherapy response in advanced ovarian cancer. J Ovarian Res 2024;17(1):234. DOI: 10.1186/s13048-024-01533-x
22. Morand S., Devanaboyina M., Staats H. et al. Ovarian cancer immunotherapy and personalized medicine. Int J Mol Sci 2021;22(12):6532. DOI: 10.3390/ijms22126532
23. Ding L., Kim H.J., Wang Q. et al. PARP inhibition elicits STING-dependent antitumor immunity in BRCA1-deficient ovarian cancer. Cell Rep 2018;25(11):2972–80.e5. DOI: 10.1016/j.celrep.2018.11.054
24. Requesens M., Foijer F., Nijman H.W., de Bruyn M. Genomic instability as a driver and suppressor of anti-tumor immunity. Front Immunol 2024;15:1462496. DOI: 10.3389/fimmu.2024.1462496
25. Konstantinopoulos P.A., Waggoner S., Vidal G.A. et al. Singlearm phases 1 and 2 trial of niraparib in combination with pembrolizumab in patients with recurrent platinum-resistant ovarian carcinoma. JAMA Oncol 2019;5(8):1141–9. DOI: 10.1001/jamaoncol.2019.1048
26. Fu Y.P., Lin H., Ou Y.C. et al. Bevacizumab as a mitigating factor for the impact of high systemic immune-inflammation index on chemorefractory in advanced epithelial ovarian cancer. BMC Cancer 2024;24(1):1377. DOI: 10.1186/s12885-024-13087-8
27. Haunschild C.E., Tewari K.S. Bevacizumab use in the frontline, maintenance and recurrent settings for ovarian cancer. Future Oncol 2020;16(7):225–46. DOI: 10.2217/fon-2019-0042
28. Zsiros E., Lynam S., Attwood K.M. et al. Efficacy and safety of pembrolizumab in combination with bevacizumab and oral metronomic cyclophosphamide in the treatment of recurrent ovarian cancer: a phase 2 nonrandomized clinical trial. JAMA Oncol 2021;7(1):78–85. DOI: 10.1001/jamaoncol.2020.5945
29. Lee E.K., Xiong N., Cheng S.C. et al. Combined pembrolizumab and pegylated liposomal doxorubicin in platinum resistant ovarian cancer: a phase 2 clinical trial. Gynecol Oncol 2020;159(1):72–8. DOI: 10.1016/j.ygyno.2020.07.028
30. Park J.Y., Lee J.Y., Lee Y.Y. et al. Major clinical research advances in gynecologic cancer in 2021. J Gynecol Oncol 2022;33(2):e43. DOI: 10.3802/jgo.2022.33.e43
31. Pawłowska A., Kwiatkowska A., Suszczyk D. et al. Clinical and prognostic value of antigen-presenting cells with PD-L1/PD-L2 expression in ovarian cancer patients. Int J Mol Sci 2021;22(21):11563. DOI: 10.3390/ijms222111563
32. Kornepati A.V.R., Rogers C.M., Sung P., Curiel T.J. The complementarity of DDR, nucleic acids and anti-tumour immunity. Nature 2023;619(7970):475–86. DOI: 10.1038/s41586-023-06069-6
33. Chabanon R.M., Rouanne M., Lord C.J. et al. Targeting the DNA damage response in immuno-oncology: developments and opportunities. Nat Rev Cancer 2021;21(11):701–17. DOI: 10.1038/s41568-021-00386-6
Review
For citations:
Sultanbaev A.V., Tuzankina I.A., Menshikov K.V., Nasretdinov A.F., Sultanbaeva N.I., Musin Sh.I., Izmailov A.A., Sultanbaev M.V., Izmailova A.A., Troshenkov E.A., Kudlay D.A. The importance of the level of T-cell receptor excision circles and κ-deletion B-cell receptor excision circles in the effectiveness of therapy for metastatic ovarian cancer. Russian Journal of Biotherapy. 2025;24(4):31-38. (In Russ.) https://doi.org/10.17650/1726-9784-2025-24-4-31-38






























