Preview

Russian Journal of Biotherapy

Advanced search

ANTI-TUMOR EFFECT OF CPDA ENANTIOMERS IN VITRO IN THE MODEL OF ACUTE LYMPHOBLASTIC LEUKEMIA

https://doi.org/10.17650/1726-9784-2017-16-1-61-69

Abstract

Introduction. Glucocorticoids are the important component of combined chemotherapy of blood cancer. Therapeutic effects of glucocorticoids is realized via activation of glucocorticoid receptor transrepression, the development of side effects is associated with transactivation. We demonstrated earlier that compound belonging the class of selective glucocorticoid receptor agonists, CpdA, selectively induced transrepression in blood cancer cells. CpdA represents a mixture of two enantiomers, which can differ in interaction with the receptor. Aim. The main aim of present study was to synthesize CpdA enantiomers and to evaluate their biological properties. Materials and methods. Synthesis was carried out based on Sharpless dihydroxylation; anti-tumor activity in vitro was evaluated by antiproliferative and pro-apoptotic effects. Ligand properties were estimated by PCR-analysis of glucocorticoid- and NF-kB-dependent genes expression. Results and conclusions. We demonstrated that CpdA enantiomers revealed anti-tumor activity in vitro and did not induce transactivation. Moreover, S-enantiomer of CpdA in the most tests demonstrated more pronounced activity and is more perspective molecule for future studies in vivo.

About the Authors

A. V. Savinkova
N.N. Blokhin Russian Cancer Research Center
Russian Federation


L. R. Tilova
N.N. Blokhin Russian Cancer Research Center
Russian Federation


O. I. Borisova
N.N. Blokhin Russian Cancer Research Center
Russian Federation


E. M. Zhidkova
N.N. Blokhin Russian Cancer Research Center; Moscow Technological University
Russian Federation


K. A. Kuzin
N.N. Blokhin Russian Cancer Research Center
Russian Federation


K. I. Kirsanov
N.N. Blokhin Russian Cancer Research Center
Russian Federation


G. A. Belitsky
N.N. Blokhin Russian Cancer Research Center
Russian Federation


I. V. Budunova
Northwestern University
Russian Federation


M. G. Yakubovskaya
N.N. Blokhin Russian Cancer Research Center
Russian Federation


E. A. Lesovaya
N.N. Blokhin Russian Cancer Research Center; Ryazan State Medical University named after academician I.P. Pavlov
Russian Federation


References

1. Басов П.В. Влияние глюкокортикоидных гормонов на Т-лимфоциты у больных туберкулезом легких. Проблемы туберкулеза 1990; 1: 30-3.

2. Витовская О.П. Медикаментозно индуцированная глаукома. Офтальмологические ведомости 2014; 7(3): 58-62.

3. Иванова А.А. Механизмы антилейкемического действия и возможные пути развития резистентности при использовании глюкокортикоидов в терапии острых лейкозов (обзор литературы). Гематология и трансфузиология 2000; 45(2): 12-5.

4. Спичак И.И., Богачева М.В., Билялутдинова Д.И. и др. Частота стероидного диабета на программной полихиомиотерапии у детей с лимфобластным лейкозом. Педиатрический вестник Южного Урала 2014; 1-2: 30-3.

5. Страчунский Л.С., Козлов С.Н. Глюкокортикоидные препараты. Методическое пособие. Смоленск, 1997.

6. Cutolo M. Glucocorticoids and chronotherapy in rheumatoid arthritis. RMD open 2016; 2(1): 1 -10. DOI: 10.1136/rmdopen-2015-000203. PMID: 27042335.

7. Klaustermeyer W.B., Choi S.H. A perspective on systemic corticosteroid therapy in severe bronchial asthma in adulds. Allergy Asthma Proc 2016; 37(3): 192-8.DOI: 10.2500/aap.2016.37.3941. PMID: 27178888.

8. Топорова И.Ю., Паровичникова Е.Н., Клясова Г.А. и др. Частота развития и структура инфекционных осложнений, возникающих у больных с гемобластозами на различных этапах программной химиотерапии. Гематология и трансфузиология (приложение) 2012; 54.

9. Lekva T., Bollerslev T.J., Kristo C. et al. The glucocorticoid-induced leucine zipper gene (GILZ) expression decreases after successful treatment of patients with endogenous Cushing’s syndrome and may play a role in glucocorticoid-induced osteoporosis. J Clin Endocrinol Metab 2010; V(1): 246-55. DOI: 10.1210/jc.2009-0595. PMID: 19875485.

10. Thompson E.B., Harmon J.M. Glucocorticoid receptors and glucocorticoid resistance in human leukemia in vivo and in vitro. Adv Exp Med Biol 1986; 196: 111-27. DOI: 10.1007/978-1 -4684-5101-6_8. PMID: 3521219.

11. Лесовая Е.А., Емельянов А.Ю., Кирсанов К.И. и др. Противоопухолевое действие нестероидного лиганда глюкокортикоидного рецептора, CpdA, на клетки линий Т-клеточного лейкоза. Биохимия (Москва) 2011; 76(11): 1242-52.

12. Polman J.A., de Kloet E.R., Datson N.A. Two populations of glucocorticoid receptor-binding sites in the male rat hippocampal genome. Endocrinology 2013; 154(5): 1832-44. DOI: 10.1210/en.2012-2187. PMID: 23525215.

13. Ray A., Prefontaine K.E. Physical association and functional antagonism between the p65 subunit of transcription factor NF-kappa B and the glucocorticoid receptor. Proc Natl Acad Sci USA 1994; 91(2): 752-6. PMID: 8290595.

14. Хаитов Р.М., Ильина Н.И. Аллергология и иммунология. Национальное руководство. М.: ГОЭТАР-Медиа, 2012. 633 с.

15. Hudson W.H., Youn C., Ortlund E.A. The structural basis of direct glucocorticoid-mediated transrepression. Nat Struct Mol Biol 2013; 20(1): 53-8. DOI: 10.1038/nsmb.2456. PMID: 23222642.

16. Surjit M., Ganti K.P., Mukherji A. et al. Widespread negative response elements mediate direct repression by agonist-leganded glucocorticoid receptor. Cell 2011; 145(2): 224-41. DOI: 10.1016/j.cell.2011.03.027. PMID: 21496643.

17. Bosscher de K., Haegeman G., Elewaut D. Targeting inflammation using selective glucocorticoid receptor modulators. Curr Opin Pharmacol 2010; 10(4): 497-504. DOI: 10.1016/j.coph.2010.04.007. PMID: 20493772.

18. Lesovaya E., Yemelyanov A., Swart A.C. et. al. Discovery of Compound A - a selective activator of the glucocorticoid receptor with anti-inflammatory and anti-cancer activity. Oncotarget 2015; 6(31): 30730-44. DOI: 10.18632/oncotarget.5078. PMID: 26436695.

19. Sharpless K.B., Amberg W., Bennani Y.L. et al. The osmium-catalyzed asymmetric dihydroxylation: a new ligand class and process improvement. JOC 1992; 57(10): 2768-71. DOI: 10.1021/jo00036a003.

20. Antakly T., Eisen H.J. Immunocytochemical localization of the glucocorticoid receptor in steroidsensitive and -resistant human leukemic cells. Cancer Res 1990; 50(4): 1337-45. PMID: 2404592.

21. Foley G.E., Lazarus H., Farber S. et al. Continuous culture of human lymphoblasts from peripheral blood of a child with acute leukemia. Cancer 1965; 18: 522-9. PMID: 14278051.

22. Norman M.R. Thompson E.B. Characterization of a glucocorticoid-sensitive human lymphoid cell line. Cancer Res 1977; 37(10): 3785-91. PMID: 269011.

23. Thompson E.B., Medh R.D., Zhou F. et al. Glucocorticoids, oxysterols, and cAMP with glucocorticoids each cause apoptosis of CEM cells and suppress c-myc. J Steroid Biochem Mol Biol 1999; 69(1-6): 453-61. PMID: 10419025.

24. Kubista M., Andrade J.M., Bengtsson M. et al. The real-time polymerase chain reaction. Molecular Aspects of Medicine 2006; 27: 95-125. DOI: 10.1016/j. mam. 2005.12.007. PMID: 16460794.

25. Lesovaya E., Yemelyanov A., Kirsanov K. et al. Combination of a selective activator of the glucocorticoid receptor Compound A with a proteasome inhibitor as a novel strategy for chemotherapy of hematologic malignancies. Cell Cycle 2013; 12(1): 133-44. DOI: 10.4161/cc.23048. PMID: 23255118.

26. Yemelyanov A., Czwornog J., Gera L. et al. Novel steroid receptor phytomodulator compound A inhibits growth and survival of prostate cancer cells. Cancer Res 2008; 68(12): 4763-73. DOI: 10.1158/0008-5472.CAN-07-6104. PMID: 18559523.

27. Adcock I.M. Molecular mechanisms of glucocorticosteroid actions. Pulm Pharmacol Ther 2000; 13(3): 115-26. DOI: 10.1006/pupt. 2000.0243. PMID: 10873549.

28. Chauhan D., Auclair D., Robinson E.K. et al. Identification of genes regulated by dexamethasone in multiple myeloma cells using oligonucleotide arrays. Oncogene 2002; 21(9): 1346-58. DOI: 10.1038/sj.onc.1205205. PMID: 11857078.

29. Bruscoli S., Donato V., Velardy E. et al. Glucocorticoid-induced leucine zipper (GILZ) and long GILZ inhibit myogenic differentiation and mediate anti-myogenic effects of glucocorticoids. J Biol Chem 2010; 285(14): 10385-96. DOI: 10.1074/jbc.M109.070136. PMID: 20124407. PMCID: PMC2856245.

30. Kochel I., Strzadala L. FK506-binding proteins in the regulation of transcription factors activity in T cells. Postepy Hig Med Dosw 2004; 58: 118-27. PMID: 15077060.

31. Shipp L.E., Lee J.V., Yu C.Y. et al. Transcriptional regulation of human dual specificity protein phosphatase 1(DUSP1) gene by glucocorticoids. PLoS One 2010; 5(10): 13754. DOI: 10.1371/journal.pone.0013754. PMID: 21060794.

32. Tchen C.R., Martins J.R., Paktiawal N. et al. Glucocorticoid regulation of mouse and human dual specificity phosphatase 1(DUSP1) genes: unusual cis-acting elements and unexpected evolutionary divergence. J Biol Chem 2010; 285(4): 2642-52. DOI: 10.1074/jbc.M109.037309. PMID: 19940143.


Review

For citations:


Savinkova A.V., Tilova L.R., Borisova O.I., Zhidkova E.M., Kuzin K.A., Kirsanov K.I., Belitsky G.A., Budunova I.V., Yakubovskaya M.G., Lesovaya E.A. ANTI-TUMOR EFFECT OF CPDA ENANTIOMERS IN VITRO IN THE MODEL OF ACUTE LYMPHOBLASTIC LEUKEMIA. Russian Journal of Biotherapy. 2017;16(1):61-69. (In Russ.) https://doi.org/10.17650/1726-9784-2017-16-1-61-69

Views: 555


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1726-9784 (Print)
ISSN 1726-9792 (Online)