Preview

Analysis of changes in subpopulation of T-regulatory cells CD4+CD25+ in metastatic renal cell carcinoma

https://doi.org/10.17650/1726-9784-2017-16-2-91-96

Abstract

Introduction. Treatment with interferon alpha (IFN-α) is a possible therapeutic option in patients with metastatic renal cell carcinoma (mRCC) with favorable and intermediate prognosis. However, in some patients there is a lack of clinical effect despite the activation of the cellular component of anti-tumor immunity. According to various authors the CD4+CD25+ suppressor cells may suppress antitumor immune response, and their study is of scientific interest. Increasing the number of these cells in the peripheral blood was found at various malignancies. Objective. To study the efficiency and tolerance of IFN-α in patients with mRCC and to examine changes in subpopulation of CD4+CD25+ T-lymphocytes and their association with the efficiency of the therapy. Materials and methods. Forty-one patients with mRCC received IFN-α in 2011 to 2016. Therapy was performed in the 1st line in 32 patients and in the 2nd line in 9 patients. Evaluation of immunological parameters was carried out within 1 week prior to immunotherapy, 2 weeks after the beginning and after 8 weeks in the control examination period. The immunophenotype of lymphocytes was assessed by multi-color flow cytometry using antibodies, including CD3, CD4, CD8, CD16, CD20, CD25 and perforin. Statistical analysis and data processing was performed using STATISTICA program (version 13). Results. The complete effect was achieved in 2 (4.8 %) patients, partial regressions were recorded in 9 (21.9 %) patients, and long (≥6 months) stabilizations of a tumor process were observed in other 19 (46.3 %) patients. The overall rate of disease control (complete + partial regressions + long stabilizations) was 73.1 %. The median time to progression was 8 months (p = 0.03). The baseline count of CD4+CD25+ T-lymphocytes in patients with an objective response was almost within the donor group (3.5 ± 2.1 %) and amounted to 4.4 ± 3.0 % (p <0.05). The baseline count of this subpopulation of cells was thrice greater in patients with the progressive disease: 12.1 ± 8.0 %. It should be noted a tendency to reduce this count during therapy in the group with clinical effect. Conclusion. The baseline count of subpopulations of CD4+CD25+ T-lymphocytes in the peripheral blood of patients can be a negative prognostic factor in immunotherapy IFN-α, most likely due to immunoregulatory subpopulations of CD4+CD25+FOXP3+CD-127bw-T-cells (Treg). It is advisable to further study this subpopulation of T-cells as a potential marker of the effectiveness of immunotherapeutic approaches.

About the Authors

M. S. Sayapina
N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia
Russian Federation


A. A. Borunova
N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia
Russian Federation


T. N. Zabotina
N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia
Russian Federation


D. A. Nosov
Central Clinical Hospital, Administration of President of Russia
Russian Federation


References

1. Sakaguchi S. Naturally arising FOXP3-ex-pressing CD25+CD4+ regulatory T-cells in immunological tolerance to self and nonself. Nat Immunology 2005;6(4):345-52. DOI: 10.1038/ni1178. PMID: 15785760.

2. Wei W.Z., Morris G.P., Kong Y.C. Anti-tumor immunity and autoimmunity: a balancing act of regulatory T-cells. Cancer Immunol Immunother 2004;53(2):73-8. DOI: 10.1007/s00262-003-0444-1. PMID: 14610619.

3. Кадагидзе З.Г., Черткова А.И., Славина Е.Г. Иммунорегуляторные CD25+C-D4+-Т-клетки. Российский биотерапевтический журнал 2006;5(2):13-20.

4. Baecher-Allan C., Brown J., Freeman G. et al. CD4+CD25high regulatory cells in human peripheral blood. J Immunol 2001;167(3):1245-53. PMID: 11466340.

5. Быковская С.Н., Карасев А.В., Лохонина А.В., Клейменова Е.Б. Анализ Т-регуляторных клеток CD4+CD25+FOXP3+ при аутоиммунных заболеваниях. Молекулярная медицина 2013;3:20-8.

6. Sakaguchi S., Miyara M., Costantino C.M., Hafler D.A. FOXP3+ regulatory T-cells 2'2017 том 16 I vol. 16 in the human immune system. Nat Rev Immunol 2010;10(7):490-500. DOI: 10.1038/nri2785. PMID: 20559327.

7. Gambineri E., Torgerson T., Ochs H. Immune dysregulation, polyendocrinopathy, enteropathy and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T-cell homeostasis. Curr Opin Rheumatol 2003;15(4):430-5. PMID: 12819471.

8. Liu W., Putnam A., Xu-Yu Z. et al. CD127 expression inversely correlates with FOXP3 and suppressive function of human CD4+Treg cells. J Exp Med 2006;203(7):1701-11. DOI: 10.1084/jem.20060772. PMID: 16818678. PMCID: PMC2118339.

9. Yang Z.Z., Ansell S.M. The role of Treg-cells in the cancer immunological response. Am J Immunol 2009;5(1):17-28.

10. Lуez-Hoyos M., Segundo D., Arias M. Cellular immunotolerance in the transplant. Adv Exp Med Biol 2012;741:44-59. DOI: 10.1007/978-1-4614-2098-9_4. PMID: 22457102.

11. Жулай Г.А., Олейник Е.К. Регуляторные Т-лимфоциты CD4+CD25+FOXP3+. Перспективы применения в иммунотерапии. Труды Карельского научного центра РАН 2012;2:3-17.

12. Workman C., Szymczak-Wrrkman A., Collison L. et al. The development and function of regulatory T-cells. Cell Mol Life Sci 2009;66(16):2603-22. DOI: 10.1007/s00018-009-0026-2. PMID: 19390784. PMCID: PMC2715449.

13. Thornton A., Korty P., Tran D. et al. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced FOXP3+ T-regulatory cells. J Immunol 2010;184(7):3433-41. DOI: 10.4049/jimmunol.0904028. PMID: 20181882. PMCID: PMC3725574.

14. Baron U., Floess S., Wieczorek G. et al. DNA demethylation in the human FOXP3 locus discriminates regulatory T-cells from activated FOXP3+ conventional T-cells. Eur J Immunol 2007;37(9):2378-89. DOI: 10.1002/eji.200737594. PMID: 17694575.

15. Janson P.C., Winerdal M.E., Marits P. et al. FOXP3 promoter demethylation reveals the committed Treg population in humans. PLoS One 2008;3(2):e1612. DOI: 10.1371/journal.pone.0001612. PMID: 18286169.

16. Hawiger D., Wan Y.Y., Eynon E.E., Flavell R.A. Homeodomain only protein is required for the function of induced regulatory T-cells in dendritic cell-mediated peripheral T-cell unresponsiveness. Nat Immunol 2010;11(10):962-8. DOI: 10.1038/ni.1929. PMID: 20802482.

17. Tran D.Q., Andersson J., Hardwick D. et al. Selective expression of latency-associated peptide (LAP) and IL-1 receptor type I/II (CD121a/CD121b) on activated human FOXP3+ regulatory T-cells allows for their purification from expansion cultures. Blood 2009;113(21):5125-33. DOI: 10.1182/blood-2009-01-199950. PMID: 19299332.

18. Elkorda E., Sharma S., Burt D.J., Hawkins R.E. Expanded subpopulation of F OXP3+ T-regulatory cells in renal cell carcinoma co-express Helios, indicating they could be derived from natural but not induced Tregs. Clin Immonol 2011;140(3):218-22. DOI: 10.1016/j.clim.2011.04.014. PMID: 21570917.

19. Siddiqui SA., Frigola X., Bonne-Annee S. et al. Tumor-infiltrating FOXP3- CD4+CD25+ T-cells predict poor survival in renal cell carcinoma. Clin Cancer Res 2007;13(7):2075-81. DOI: 10.1158/1078-0432.CCR-06-2139. PMID: 17404089.

20. Cesana G.C., DeRaffele G., Cohen S. et al. Characterization of CD4+CD25+ regulatory T-cells in patients treated with high-dose interleukin-2 for metastatic melanoma or renal cell carcinoma. J Clin Oncol 2006;24(7):1169-77. DOI: 10.1200/JCO.2005.03.6830. PMID: 16505437.

21. Schwarzer A., Wolf B., Fisher J.L. et al. Regulatory T-cells and associated pathways in metastatic renal cell carcinoma (mRCC) patients undergoing DC-vaccination and cytokine-therapy. PLoS One. 2012;7(10):e46600. DOI: 10.1371/journal.pone.0046600. PMID: 23118856.

22. Finke J.H., Rini B., Ireland J. et al. Sunitinib reverses type-1 immune suppression and decreases T-regulatory cells in renal cell carcinoma patients. Clin Cancer Res 2008;14(20):6674-82. DOI: 10.1158/1078-0432.CCR-07-5212. PMID: 18927310.

23. Носов Д.А. Метастатический рак почки: новые лекарственные возможности и рациональные лечебные подходы. Автореф. дис.. д-ра мед. наук. М., 2012. 201 с.


Review

For citations:


Sayapina M.S., Borunova A.A., Zabotina T.N., Nosov D.A. Analysis of changes in subpopulation of T-regulatory cells CD4+CD25+ in metastatic renal cell carcinoma. Russian Journal of Biotherapy. 2017;16(2):91-96. (In Russ.) https://doi.org/10.17650/1726-9784-2017-16-2-91-96

Views: 416


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1726-9784 (Print)
ISSN 1726-9792 (Online)