Preview

Российский биотерапевтический журнал

Расширенный поиск

Изменение экспрессии мРНк MDM2 и NFkBl в клеточных линиях меланомы человека при воздействии 2 лекарственных форм аранозы

https://doi.org/10.17650/1726-9784-2017-16-3-52-58

Аннотация

Введение. Проблема резистентности к противоопухолевым препаратам является серьезным препятствием для успешной химиотерапии опухолей. В ряде работ показано, что липосомальные формы противоопухолевых препаратов способны преодолевать множественную лекарственную устойчивость, но механизм, с помощью которого это происходит, до сих пор не известен. Одним из химиопрепаратов, применяемых для лечения меланомы, является араноза из класса нитрозомочевины - метилирующий ДНК агент. Цель исследования - изучить воздействие лекарственных форм аранозы (липосомальной и «лиофилизата для приготовления раствора для инъекций» (араноза-лио)), а также пустых липосом на экспрессию мРНКр53, MDM2, NFkB1, NFkB2, MyD88 в опухолевых клетках. Материалы и методы. Исследование проводили на 10 клеточных линиях метастатической меланомы человека, 4 из которых несли мутацию BRAF. Клеточные линии инкубировали 24 ч с лекарственными формами аранозы - аранозой-лио и липосомальной, а также с пустыми липосомами. В количественной полимеразной цепной реакции в реальном времени исследовали уровень экспрессии генов р53, MDM2, NFkB1, NFkB2, MyD88. Результаты. Араноза-лио повышает экспрессию мРНКр53 незначительно и только на BRAF-положительных клетках, при этом статистически значимо (p = 0,0013) повышает экспрессию мРНК MDM2 - фактора резистентности опухоли к химиотерапии. Экспрессия мРНК белков NFkB2, MyD88 не отличалась при воздействии разных лекарственных форм аранозы и слабо отличалась от контроля. Липосомальная араноза повышает экспрессию мРНК NFkB1 - фактора гибели клеток в ответ на повреждение ДНК метилированием. Выводы. Две лекарственные формы аранозы - липосомальная и араноза-лио - оказывают различное воздействие на внутриклеточные сигнальные пути в клетках метастатической меланомы. Араноза-лио запускает механизмы устойчивости к химиотерапии посредством повышения экспрессии мРНК MDM2. Липосомальная араноза, наоборот, запускает механизмы, способствующие чувствительности клеток к терапии, через повышение экспрессии мРНК NFkB1 - фактора гибели клеток в ответ на повреждение ДНК метилированием.

Об авторах

А. В. Пономарев
ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России
Россия


В. А. Мисюрин
ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России
Россия


А. А. Рудакова
ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России
Россия


О. С. Бурова
ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России
Россия


А. В. Мисюрин
ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России
Россия


М. А. Барышникова
ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России
Россия


Список литературы

1. Грищенко Н.В., Альбассит Б., Барышникова М.А. и др. Сравнение цитотоксического дей ствия лекарственных форм противоопухолевых препаратов из класса нитрозомочевины. Российский биотерапевтический журнал 2014;13(1):41-53.

2. Шоуа И.Б., Полозкова А.П., Оборотова Н.А. и др. Действие липосомального доксорубицина на клетки линии, экспрессирующие активный Pgp170. Российский биотерапевтический журнал 2004;3(1):20-3.

3. Cartwright T., Perkins N.D., L Wilson C. NFKB1: a suppressor of inflammation, ageing and cancer. FEBS J 2016;283(10):1812-22. DOI: 10.1111/febs.13627. PMID: 26663363.

4. Voce D.J., Schmitt A.M., Uppal A. et al. Nfkb1 is a haploinsuficient DNA damage-specific tumor suppressor. Oncogene 2015;34(21):2807-13. DOI: 10.1038/onc.2014.211. PMID: 25043302.

5. Ishikawa H., Claudio E., Dambach D. et al. Chronic inflammation and susceptibility to bacterial infections in mice lacking the polypeptide (p) 105 pre cursor (NF-kappaB1) but expressing p50. J Exp Med 1998;187(7):985-96. PM ID: 9529315.

6. Schmitt A.M., Crawley C.D., Kang S. et al. p50 (NF-kB1) is an effector protein in the cytotoxic response to DNA methylation damage. Mol C ell 2011;44(5):785-96. DOI: 10.1016/j.molcel.2011.09.026. PMID: 22152481.

7. Lu Y.C., Yeh W.C., Ohashi P.S. LPS/ TLR4 signal transduction pathway. Cytokine 2008;42(2):145-51. DOI: 10.1016/j.cyto.2008.01.006. PMID: 18304834.

8. Goto Y., Arigami T., Kitago M. et al. Activation of Toll-like receptors 2, 3, and 4 on human melanoma cells induces inflammatory factors. Mol Cancer Ther 2008;7(11):3642-53. DOI: 10.1158/1535-7163.MCT-08-0582. PMID: 19001446.

9. Копнин Б.П., Копнин П.Б., Хромова Н.В. и др. Многоликий р53: разнообразие форм, функций, опухольсупрессирующих и онкогенных активностей. Клиническая онкогематология 2008;1(1):2-9.

10. Green D.R., Chipuk J.E. p53 and metabolism: Inside the TIGAR. Cell 2006;126(1):30-2. DOI: 10.1016/j.cell.2006.06.032. PMID: 16839873.

11. Blagosklonny M.V Loss of function and p53 protein stabilization. О ncogene 1997;15(16):1889-93. DOI: 10.1038/sj.onc.1201374. PMID: 9365234.

12. Lavin M.F., Gueven N. The complexity of p53 stabilization and activation. Cell Death Differ 2006;13(6):941-50. DOI: 10.1038/sj.cdd.4401925. PMID: 16601750.

13. Roemer K. Mutant p53: gain-of-function oncoproteins and wild-type p53 inactivators. Biol Chem 1999;380(7-8): 879-87. DOI: 10.1515/BC.1999.108. PMID: 10494837.

14. Houben R., Hesbacher S., Schmid C.P. et al. High-level expression of wild-type p53 in melanoma cells is frequently associated with inactivity in p53 reporter gene assays. PLoS One 2011;6(7):e22096. DOI: 10.1371/journal.pone.0022096. PMID: 21760960.

15. Michael D., Oren M. The p53 and Mdm2 families in cancer. Curr Opin Genet Dev 2002;12(7):53-9. PMID: 11790555.

16. Soussi T., Beroud C. Assessing TP53 status in human tumours to evaluate clinical outcome. Nat Rev Cancer 2001;1(3):233-40. DOI: 10.1038/35106009. PMID: 11902578.

17. Gwosdz C., Scheckenbach K., Lieven O. et al. Comprehensive analysis of the p53 status in mucosal and cutaneous melanomas. Int J Cancer 2006;118(3):577-82. DOI: 10.1002/ijc.21366. PMID: 16094622.

18. Sparrow L.E., Soong R., Dawkins H.J. et al. p53 gene mutation and expression in naevi and melanomas. Melanoma Res 1995;5(2):93-100. PMID: 7620345.

19. Soto J.L., Cabrera C.M., Serrano S., Lopez-Nevot M.A. Mutation analysis of genes that control the G1/S cell cycle in melanoma: TP53, CDKN1A, CDKN2A, and CDKN2B. BMC Cancer 2005;5:36. DOI: 10.1186/1471-2407-5-36. PMID: 15819981.

20. Li W., Sanki A., Karim R.Z. et al. The role of cell cycle regulatory proteins in the pathogenesis of melanoma. Pathology 2006;38(4):287-301. DOI: 10.1080/00313020600817951. PMID: 16916716.

21. Avery-Kiejda K.A., Bowden N.A., Croft A.J. et al. P53 in human melanoma fails to regulate target genes associated with apoptosis and the cell cycle and may contribute to proliferation. BMC Cancer 2011;11:203. DOI: 10.1186/1471-2407-11-203. PMID: 21615965.

22. Козеев Г. С. Разработка липосомальной лекарственной формы противоопухолевого препарата араноза. Автореф. дис.. канд. фарм. наук. М., 2013.

23. Козеев С.Г., Барышникова М.А., Полозкова С.А., Оборотова Н.А. Разработка наноструктурированной липосомальной формы аранозы. Российский биотерапевтический журнал 2012;11(2):24.

24. Козеев С.Г., Барышникова М.А., Афанасьева Д.А. и др. Сравнение цитотоксического действия двух лекарственных форм аранозы. Российский биотерапевтический журнал 2012;11(2):24.

25. Афанасьева Д.А., Мисюрин В. А., Пономарев А.В. и др. Изменение уровня экспрессии гена CD95/FAS в клетках линий меланомы под воздействием липосомальной аранозы. Российский биотерапевтический журнал 2016;15(3):34-9. DOI: 10.17650/1726-9784-2016-15-3-34-39.

26. Афанасьева Д.А., Барышникова М.А., Хоченкова Ю.А. и др. Липосомальная араноза не индуцирует аутофагию. Российский биотерапевтический журнал 2015;14(1):15-8.

27. Михайлова И.Н., Лукашина М.И., Барышников А.Ю. и др. Клеточные линии меланомы - основа для создания противоопухолевых вакцин. Вестник РАМН 2005;7:37-40.

28. Рябая О.О., Цыганова И.В., Сидорова Т.И. и др. Влияние активирующих мутаций V600 гена B-RAF на способность клеток меланомы к аутофагии. Саркомы костей, мягких тканей и опухоли кожи 2013;3:68-72.

29. Emelyanova M., Ghukasyan L., Abramov I. et al. Detection of BRAF, NRAS, KIT, GNAQ, GNA11 and MAP2K1/2 mutations in Russian melanoma patients using LNA PCR clamp and biochip analysis. Oncotarget 2017;8:52304-20. DOI: 10.18632/oncotarget.17014. PMID: 28455977.

30. Михайлова И.Н., Ковалевский Д.А., Бурова О.С. и др. Экспрессия раково-тестикулярных антигенов в клетках меланомы человека. Сибирский онкологический журнал 2010;37(1):29-39.

31. Chomczynski P., Sacchi N. The singlestep method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: Twenty something years on. Nat Protoc 2006;1(2):581-5. PMID: 17406285.

32. Moore F.R., Rempfer C.B., Press R.D. Quantitative BCR-ABL1 RQ-PCR fusion transcript monitoring in chronic myelogenous leukemia. Press Methods Mol Biol 2013;999:1-23. DOI: 10.1007/978-1-62703-357-2_1. PMID: 23666687.

33. Hientz K., Mohr A., Bhakta-Guha D. et al. The role of p53 in cancer drug resistance and targeted chemotherapy. Oncotarget 2017;8(5):8921-46. DOI: 10.18632/oncotarget.13475. PMID: 27888811.

34. Buolamwini J.K., Addo J., Kamath S. et al. Small molecule antagonists of the MDM2 oncoprotein as anticancer agents. Curr Cancer Drug Targets 2005;5(1):57-68. DOI: 10.2174/1568009053332672. PMID: 15720190.


Рецензия

Для цитирования:


Пономарев А.В., Мисюрин В.А., Рудакова А.А., Бурова О.С., Мисюрин А.В., Барышникова М.А. Изменение экспрессии мРНк MDM2 и NFkBl в клеточных линиях меланомы человека при воздействии 2 лекарственных форм аранозы. Российский биотерапевтический журнал. 2017;16(3):52-58. https://doi.org/10.17650/1726-9784-2017-16-3-52-58

For citation:


Ponomarev A.V., Misyurin V.A., Rudakova A.A., Burova O.S., Misyurin A.V., Baryshnikova M.A. The influence of drug formulations on the expression of MDM2 and NFkB1 mRNA in the melanoma cell lines. Russian Journal of Biotherapy. 2017;16(3):52-58. (In Russ.) https://doi.org/10.17650/1726-9784-2017-16-3-52-58

Просмотров: 451


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1726-9784 (Print)
ISSN 1726-9792 (Online)